# Table for CAN(2,k,21) for k up to 20000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;2,k,21) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: +

Change v: - +
 k N Source 7 441 orthogonal array 24 524 orthogonal array 25 526 fuse symbols 26 527 projection (Colbourn) 27 618 fuse symbols 28 619 fuse symbols 29 620 fuse symbols 30 621 projection (Colbourn) 31 720 fuse symbols 32 721 fuse symbols 33 722 fuse symbols 34 723 projection (Colbourn) 35 830 fuse symbols 36 831 fuse symbols 37 832 fuse symbols 38 833 projection (Colbourn) 42 841 group 1-rotational (Meagher-Stevens, Colbourn) 48 861 CMMSSY 2.3 49 881 CMMSSY 2.2 167 944 CMMSSY 2.3 175 946 CMMSSY 2.2 182 947 CMMSSY 2.2 575 1027 CMMSSY 2.2 600 1029 CMMSSY 2.2 624 1030 CMMSSY 2.2 625 1031 CMMSSY 2.2 650 1032 CMMSSY 2.2 676 1033 CMMSSY 2.2 696 1123 CMMSSY 2.2 720 1124 CMMSSY 2.2 728 1125 CMMSSY 2.2 754 1126 CMMSSY 2.2 780 1127 CMMSSY 2.2 784 1217 CMMSSY 2.2 812 1218 CMMSSY 2.2 841 1219 CMMSSY 2.2 870 1220 CMMSSY 2.2 900 1221 CMMSSY 2.2 930 1320 CMMSSY 2.2 960 1321 CMMSSY 2.2 990 1322 CMMSSY 2.2 1020 1323 CMMSSY 2.2 1050 1346 CMMSSY 2.2 1092 1347 CMMSSY 2.2 1146 1364 CMMSSY 2.3 1200 1366 CMMSSY 2.3 1274 1367 CMMSSY 2.3 3985 1447 CMMSSY 2.2 4175 1449 CMMSSY 2.3 4368 1450 CMMSSY 2.2 4375 1451 CMMSSY 2.3 4550 1452 CMMSSY 2.2 4732 1453 CMMSSY 2.2 13754 1530 CMMSSY 2.2 14375 1532 CMMSSY 2.2 14976 1533 CMMSSY 2.2 15000 1534 CMMSSY 2.2 15600 1535 CMMSSY 2.2 16224 1536 CMMSSY 2.2 16250 1537 CMMSSY 2.2 16900 1538 CMMSSY 2.2 17576 1539 CMMSSY 2.2 18096 1629 CMMSSY 2.2 18720 1630 CMMSSY 2.2 18928 1631 CMMSSY 2.2 19604 1632 CMMSSY 2.2 20000 1633 CMMSSY 2.2
Graph: