Table for CAN(2,k,22) for k up to 20000

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;2,k,22) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: +

Change v: - +
 k N Source 5 484 orthogonal array 24 526 orthogonal array 25 528 projection (Colbourn) 26 618 orthogonal array 27 620 fuse symbols 28 621 fuse symbols 29 622 projection (Colbourn) 30 721 fuse symbols 31 722 fuse symbols 32 723 fuse symbols 33 724 projection (Colbourn) 34 831 fuse symbols 35 832 fuse symbols 36 833 fuse symbols 37 834 projection (Colbourn) 45 946 group 1-rotational (Meagher-Stevens, Colbourn) 46 967 group 1-rotational (Meagher-Stevens, Colbourn) 120 988 CMMSSY 2.2 125 990 CMMSSY 2.2 575 1030 CMMSSY 2.2 600 1032 CMMSSY 2.2 625 1034 CMMSSY 2.2 650 1124 CMMSSY 2.2 672 1125 CMMSSY 2.2 696 1126 CMMSSY 2.2 700 1127 CMMSSY 2.2 725 1128 CMMSSY 2.2 728 1217 CMMSSY 2.2 754 1218 CMMSSY 2.2 756 1219 CMMSSY 2.2 784 1220 CMMSSY 2.2 812 1221 CMMSSY 2.2 841 1222 CMMSSY 2.2 858 1320 CMMSSY 2.2 870 1321 CMMSSY 2.2 899 1322 CMMSSY 2.2 928 1323 CMMSSY 2.2 957 1324 CMMSSY 2.2 961 1422 CMMSSY 2.2 992 1423 CMMSSY 2.2 1024 1424 CMMSSY 2.2 1056 1425 CMMSSY 2.2 1089 1426 CMMSSY 2.2 1125 1452 CMMSSY 2.2 1150 1473 CMMSSY 2.2 2875 1492 CMMSSY 2.2 3000 1494 CMMSSY 2.2 3125 1496 CMMSSY 2.2 13754 1534 CMMSSY 2.2 14400 1536 CMMSSY 2.2 15000 1538 CMMSSY 2.2 15625 1540 CMMSSY 2.2 16100 1629 CMMSSY 2.2 16704 1630 CMMSSY 2.2 16800 1631 CMMSSY 2.2 17400 1632 CMMSSY 2.2 17500 1633 CMMSSY 2.2 18125 1634 CMMSSY 2.2 18200 1723 CMMSSY 2.2 18850 1724 CMMSSY 2.2 19488 1725 CMMSSY 2.2 20000 1726 CMMSSY 2.2
Graph: