CA Tables for t=2,3,4,5,6

For given t and v, the table CAN(t,k,v) gives the current best known upper bound on the number of rows in the smallest uniform covering array having k factors each with v levels, with coverage at strength t. Covering array numbers are reported for each k up to 20000 for strength two, 10000 for strengths three through six.

These tables are maintained by Charlie Colbourn on an irregular basis. Please report updates and corrections. For the most up-to-date tables, see current tables The authorities are at present not given with references, but I hope to add them.
CAN(2,k,2) CAN(3,k,2) CAN(4,k,2) CAN(5,k,2) CAN(6,k,2)
CAN(2,k,3) CAN(3,k,3) CAN(4,k,3) CAN(5,k,3) CAN(6,k,3)
CAN(2,k,4) CAN(3,k,4) CAN(4,k,4) CAN(5,k,4) CAN(6,k,4)
CAN(2,k,5) CAN(3,k,5) CAN(4,k,5) CAN(5,k,5) CAN(6,k,5)
CAN(2,k,6) CAN(3,k,6) CAN(4,k,6) CAN(5,k,6) CAN(6,k,6)
CAN(2,k,7) CAN(3,k,7) CAN(4,k,7) CAN(5,k,7) CAN(6,k,7)
CAN(2,k,8) CAN(3,k,8) CAN(4,k,8) CAN(5,k,8) CAN(6,k,8)
CAN(2,k,9) CAN(3,k,9) CAN(4,k,9) CAN(5,k,9) CAN(6,k,9)
CAN(2,k,10) CAN(3,k,10) CAN(4,k,10) CAN(5,k,10) CAN(6,k,10)
CAN(2,k,11) CAN(3,k,11) CAN(4,k,11) CAN(5,k,11) CAN(6,k,11)
CAN(2,k,12) CAN(3,k,12) CAN(4,k,12) CAN(5,k,12) CAN(6,k,12)
CAN(2,k,13) CAN(3,k,13) CAN(4,k,13) CAN(5,k,13) CAN(6,k,13)
CAN(2,k,14) CAN(3,k,14) CAN(4,k,14) CAN(5,k,14) CAN(6,k,14)
CAN(2,k,15) CAN(3,k,15) CAN(4,k,15) CAN(5,k,15) CAN(6,k,15)
CAN(2,k,16) CAN(3,k,16) CAN(4,k,16) CAN(5,k,16) CAN(6,k,16)
CAN(2,k,17) CAN(3,k,17) CAN(4,k,17) CAN(5,k,17) CAN(6,k,17)
CAN(2,k,18) CAN(3,k,18) CAN(4,k,18) CAN(5,k,18) CAN(6,k,18)
CAN(2,k,19) CAN(3,k,19) CAN(4,k,19) CAN(5,k,19) CAN(6,k,19)
CAN(2,k,20) CAN(3,k,20) CAN(4,k,20) CAN(5,k,20) CAN(6,k,20)
CAN(2,k,21) CAN(3,k,21) CAN(4,k,21) CAN(5,k,21) CAN(6,k,21)
CAN(2,k,22) CAN(3,k,22) CAN(4,k,22) CAN(5,k,22) CAN(6,k,22)
CAN(2,k,23) CAN(3,k,23) CAN(4,k,23) CAN(5,k,23) CAN(6,k,23)
CAN(2,k,24) CAN(3,k,24) CAN(4,k,24) CAN(5,k,24) CAN(6,k,24)
CAN(2,k,25) CAN(3,k,25) CAN(4,k,25) CAN(5,k,25) CAN(6,k,25)