# Table for CAN(5,k,17) for k up to 10000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,17) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
 k N Source 18 1419857 orthogonal array 20 2476095 orthogonal array fuse fuse 24 4259537 perfect hash family3,24,17,c 25 4259568 perfect hash family3,25,18 36 5595907 Martirosyan-Tran van Trung 37 8189971 AZ1 39 8519057 perfect hash family6,39,17,c 42 8519136 perfect hash family6,42,18 48 9938897 perfect hash family7,48,17,c 51 9938992 perfect hash family7,51,18 55 11358737 perfect hash family8,55,17,c 63 11358848 perfect hash family8,63,18 71 12778577 perfect hash family9,71,17,c 78 12778704 perfect hash family9,78,18 88 14198417 perfect hash family10,88,17,c 216 14198560 Power N-CT19^2Arc(10) 226 15254798 Power N-CT19^2Arc(9) 289 15618257 perfect hash family11,289,17,c 290 15618416 Power CT17^2+1 291 18290816 AZ1 292 20884880 Add 2 factors 307 21592226 Power N-CT19^2Arc(3) 324 22648464 Power N-CT19^2T1T1 342 23704702 Power N-CT19^2T1 362 24760940 Power N-CT19^2+1 363 28490876 AZ1 364 31385500 Add 2 factors 432 31663442 Martirosyan-Tran van Trung 452 32719680 Martirosyan-Tran van Trung 578 33083139 Martirosyan-Tran van Trung 580 33453218 Martirosyan-Tran van Trung 582 36125618 Martirosyan-Tran van Trung 584 38719682 Martirosyan-Tran van Trung 612 39427028 Martirosyan-Tran van Trung 614 39921124 Martirosyan-Tran van Trung 615 45034996 AZ1 646 45339698 Martirosyan-Tran van Trung 648 45751088 Martirosyan-Tran van Trung 680 48036914 Martirosyan-Tran van Trung 682 49088768 Martirosyan-Tran van Trung 684 49116194 Martirosyan-Tran van Trung 720 50176464 Martirosyan-Tran van Trung 722 52020224 Martirosyan-Tran van Trung 724 52215152 Martirosyan-Tran van Trung 744 54622690 Power N-CT31^2T7 775 54622721 Power N-CT31^2T6 1044 55959060 Power N-CT37^2Arc(10) 1072 58553124 Power N-CT37^2Arc(9) 1101 61147188 Power N-CT37^2Arc(8) 1131 63741252 Power N-CT37^2Arc(7) 1162 66335316 Power N-CT37^2Arc(6) 1194 68929380 Power N-CT37^2Arc(5) 1234 70825678 Power N-CT41^2Trin2,5,5 1296 70825757 Power N-CT41^2T5T5 1332 73419821 Power N-CT41^2T5T4 1336 73748828 Power N-CT41^2Trin2,2,5 1404 73748907 Power N-CT41^2T5T2 1476 73748986 Power N-CT41^2T5 1517 76343050 Power N-CT41^2T4 1521 76672057 Power N-CT41^2T2T2 1599 76672136 Power N-CT41^2T2 1682 76672215 Power N-CT41^2+1 5000 78750069 Power CT25^3TD(6,5) trunc 5 5400 80533511 Power CT25^3TD(6,5) trunc 1 5500 80533542 Power CT25^3TD(5,5) trunc 5 5832 80931216 Power CT23^3T5T5T5 6480 81987454 Power CT23^3T5T5T3 6500 82317015 Power CT25^3TD(4,5) trunc 5 7200 83043692 Power CT23^3T5T3T3 7452 83770896 Power CT23^3T5T5 7776 83771454 Power CT25^3T7T7T1 8100 83771485 Power CT25^3T7T7 8280 84827134 Power CT23^3T5T3 8640 84827692 Power CT25^3T7T5T1 9000 84827723 Power CT25^3T7T5 9200 85883372 Power CT23^3T3T3 9600 85883930 Power CT25^3T5T5T1 10000 85883961 Power CT25^3T5T5
Graph: