Table for CAN(5,k,19) for k up to 10000

Last Updated Fri Sep 20 11:41:02 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,19) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
202476099orthogonal array
214815018extended OA (Colbourn)
246436335orthogonal array fuse fuse fuse fuse
277428259perfect hash family3,27,19,c
287428294perfect hash family3,28,20
409774075Martirosyan-Tran van Trung
4414856499perfect hash family6,44,19,c
4814856588perfect hash family6,48,20
5517332579perfect hash family7,55,19,c
6117332686perfect hash family7,61,20
6819808659perfect hash family8,68,19,c
7619808784perfect hash family8,76,20
8722284739perfect hash family9,87,19,c
9822284882perfect hash family9,98,20
10824760819perfect hash family10,108,19,c
36224760980Power N-CT19^2+1
36434020288Add 2 factors
36536366066Add 3 factors
38138711844Add 19 factors
38243403058Add 19 factors
38347971152Add 19 factors
38450316930Add 19 factors
40052662708Add 19 factors
72255399088Martirosyan-Tran van Trung
72456685692Martirosyan-Tran van Trung
72661376906Martirosyan-Tran van Trung
72865945000Martirosyan-Tran van Trung
73068290778Martirosyan-Tran van Trung
76070636556Martirosyan-Tran van Trung
76272188534Martirosyan-Tran van Trung
128477425815Power N-CT41^2Arc(9)T2
134887966666Power N-CT41^2Arc(9)
138192534760Power N-CT41^2Arc(8)
141597102854Power N-CT41^2Arc(7)
1450101670948Power N-CT41^2Arc(6)
1486106239042Power N-CT41^2Arc(5)
1523110807136Power N-CT41^2Arc(4)
1561115375230Power N-CT41^2Arc(3)
1600119943324Power N-CT41^2T1T1
8000123282306Power CT23^3T3T3T3
8400125621225Power CT23^3T3T3T2
9200127242542Power CT23^3T3T3
9660129581461Power CT23^3T3T2
10000131202778Power CT23^3T3