Table for CAN(5,k,21) for k up to 10000

Last Updated Fri Sep 20 11:41:02 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,21) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
64084101Derive from strength 6
85514335Add a symbol
96094791Add a symbol
246436339orthogonal array fuse fuse
269765617orthogonal array fuse fuse fuse fuse
2814348895orthogonal array fuse fuse fuse fuse fuse fuse
3119308979perfect hash family3,31,23,c fuse fuse
3219309014perfect hash family3,32,24
3424465583Martirosyan-Tran van Trung
3624475903Martirosyan-Tran van Trung
3824512425Martirosyan-Tran van Trung
4024524833Martirosyan-Tran van Trung
4224559355Martirosyan-Tran van Trung
4424566607Martirosyan-Tran van Trung
4624610525Martirosyan-Tran van Trung
4824682959Martirosyan-Tran van Trung
5033716691Martirosyan-Tran van Trung
5233816629Martirosyan-Tran van Trung
6445054259perfect hash family7,64,23,c fuse fuse
6545054366perfect hash family7,65,24
7951490579perfect hash family8,79,23,c fuse fuse
8051490704perfect hash family8,80,24
10157926899perfect hash family9,101,23,c fuse fuse
10257927042perfect hash family9,102,24
13862011142Power N-CT23^2T17
16162400104Power N-CT23^2T16
18463441376Power N-CT23^2T15
20764021832Power N-CT23^2T14
53064363380Power N-CT23^2+1
53283225160Add 2 factors
53387114780Add 3 factors
53497332960Add 3 factors
55397433942Power CT25^2Arc(3)
576100763220Power CT25^2T1T1
600104092498Power CT25^2T1
625107421617perfect hash family11,625,25,c fuse fuse fuse fuse
626107421776Power CT25^2+1
2116128726760Power CT23^3Tlev
3174132810860Power CT23^3T17
3703133199822Power CT23^3T16
4232134241094Power CT23^3T15
4761134821550Power CT23^3T14
10000135162739perfect hash family21,12167,23,c fuse fuse