Table for CAN(5,k,24) for k up to 10000

Last Updated Fri Sep 20 11:41:02 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,24) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
67962624Derive from strength 6
78670078Derive from strength 6
89047037Add a symbol
99440386Add a symbol
269765623orthogonal array fuse
2814348901orthogonal array fuse fuse fuse
3020511139orthogonal array fuse fuse fuse fuse fuse
3228629137orthogonal array fuse fuse fuse fuse fuse fuse fuse
3329296823perfect hash family3,33,25,c fuse
3429296866perfect hash family3,34,26
4438153718Martirosyan-Tran van Trung
5238184964Martirosyan-Tran van Trung
5451075138Martirosyan-Tran van Trung
5654569990Martirosyan-Tran van Trung
6858593732perfect hash family6,81,27S6
7063177010perfect hash family6,81,27S5
7267760288perfect hash family6,81,27S4
7472343566perfect hash family6,81,27S3
7676926844perfect hash family6,81,27S2
8178124823perfect hash family8,81,25,c fuse
8278124976perfect hash family8,82,26
10387890423perfect hash family9,103,25,c fuse
10487890598perfect hash family9,104,26
13895853221Power N-CT23^2T17
16196560675Power N-CT23^2T16
18496937634Power N-CT23^2T15
20797330983Power N-CT23^2T14
53297656220Power N-CT23^2+3
625107421623perfect hash family11,625,25,c fuse
626107421842Power CT25^2+1
628140541290Add 2 factors
651144088066Power CT27^2Arc(3)
676148671344Power CT27^2T1T1
702153254622Power CT27^2T1
730157837900Power CT27^2+1
757186624666Power N-CT29^2Arc(3)
784192786904Power N-CT29^2T1T1
2500195312440Power CT25^3Tlev
3750203275063Power CT25^3T19
4375203982517Power CT25^3T18
5000204359476Power CT25^3T17
5625204752825Power CT25^3T16
10000205077623perfect hash family21,15625,25,c fuse