Table for CAN(6,k,18) for k up to 10000

Last Updated Fri Sep 20 11:45:18 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,18) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
838131351Add a symbol
940374371Add a symbol
1042749334Add a symbol
1145264000Add a symbol
2047045879orthogonal array fuse
2186923493Add 1 factors
22124686341Add 2 factors
24148035879orthogonal array fuse fuse fuse fuse fuse
25188183465perfect hash family4,25,19,c fuse
27188183512perfect hash family4,27,20
38225325007double OA (Colbourn-Zhou) fuse
40227794247double OA (Colbourn-Zhou) fuse
41336759011Add 1 factors
42408043547Add 2 factors
45423412902perfect hash family9,45,20
47470458637perfect hash family10,47,19,c fuse
51470458780perfect hash family10,51,20
53517504499perfect hash family11,53,19,c fuse
60517504658perfect hash family11,60,20
64564550536perfect hash family12,64,20
65658642292perfect hash family14,65,20
95705687947perfect hash family15,95,19,c fuse
96705688170perfect hash family15,96,20
133739700393Power CT19^2T12
152743819520Power CT19^2T11
171746062540Power CT19^2T10
190748437503Power CT19^2T9
209750952169Power CT19^2T8
361752733809perfect hash family16,361,19,c fuse
362752734048Power CT19^2+1
363945717538Add 1 factors
3641021259758Add 2 factors
3651124458024Add 3 factors
3661183966636Add 4 factors
3671215502761Add 5 factors
3801228536179Add 19 factors
3811228536418Add 19 factors
3821425247906Add 1 factors
3831500790126Add 2 factors
5151505467601perfect hash family32,515,19,c fuse
5161505468096perfect hash family32,516,20
5171803219254Add 1 factors
5181931908166Add 2 factors
5192066011406Add 3 factors
5202117063807perfect hash family45,520,19,c fuse
5222117064510perfect hash family45,522,20
5242170198637Add 19 factors
5312172297491Add 19 factors
5342172420953Add 19 factors
5352172421448Add 19 factors
6842220737084Martirosyan-Tran van Trung
7222221998414Martirosyan-Tran van Trung
7242238616265Martirosyan-Tran van Trung
7262502945185Martirosyan-Tran van Trung
7282642347157Martirosyan-Tran van Trung
7302795441171Martirosyan-Tran van Trung
7322892612263Martirosyan-Tran van Trung
7412908617450Add 19 factors
7422925235301Add 19 factors
7432929401887Add 19 factors
7602947152816Martirosyan-Tran van Trung
7622956429619Martirosyan-Tran van Trung
8083149508709Power N-CT41^2T14S13
11343186650204Power N-CT41^2T3S13
11983189119444Power N-CT41^2Arc(14)
12263298084208Power N-CT41^2Arc(13)
13703379875090Power N-CT37^2+1
13723416913690Power N-CT37^2+3
13733815910762Add 1 factors
13813842908028Power N-CT41^2Arc(8)
14153951872792Power N-CT41^2Arc(7)
14504060837556Power N-CT41^2Arc(6)
14864169802320Power N-CT41^2Arc(5)
15234278767084Power N-CT41^2Arc(4)
15614387731848Power N-CT41^2Arc(3)
16004496696612Power N-CT41^2T1T1
16404605661376Power N-CT41^2T1
16814714626140Power N-CT41^2
16825118489836Add 1 factors
16835291094032Add 2 factors
16845465001734Add 3 factors
16855531860106Add 4 factors
16865563396231Add 5 factors
17005576429888Add 19 factors
17205732161959Power N-CT43^2T3
17225825757368Power N-CT43^2T2T1
17635841126723Power N-CT43^2T2
17645897041904Power N-CT43^2T1T1
18065912411259Power N-CT43^2T1
18515927780614Power N-CT43^2+2
18526334542436Add 1 factors
18806343756514Power N-CT47^2T7
28006437204147Power CT31^3T24T11T11
32006441323274Power CT31^3T23T11T11
36006443566294Power CT31^3T22T11T11
40006445941257Power CT31^3T21T11T11
44006448455923Power CT31^3T20T11T11
80006450237802Power CT31^3T11T11T11
84006490115416Power CT31^3T11T11T10
88006527878264Power CT31^3T11T11T9
88206529993030Power CT31^3T11T10T10
96006551227802Power CT31^3T11T11T7
100006591105416Power CT31^3T11T10T7