A HARDWARE ARCHITECTURE FOR ACCELERATING NEUROMORPHIC VISION ALGORITHMS

A. Al Maashri, M. DeBole, C.-L. Yu†, V. Narayanan, C. Chakrabarti†

Department of Computer Science and Engineering, The Pennsylvania State University University Park, PA 16802, USA {maashri, debole, vijay}@cse.psu.edu

†School of Electrical, Computer and Energy Engg, Arizona State University Tempe, AZ 85287, USA {chi-li.yu, chaitali}@asu.edu

ABSTRACT

Neuromorphic vision algorithms are biologically inspired algorithms that follow the processing that takes place in the visual cortex. These algorithms have proved to match classical computer vision algorithms in classification performance and even outperformed them in some instances. However, neuromorphic algorithms suffer from high complexity leading to poor execution times when running on general purpose processors, making them less attractive for real-time applications. FPGAs, on the other hand, have become true signal processing platforms due to their lightweight, low power consumption and massive parallel computational resources. This paper describes an FPGA-based hardware architecture that accelerates an object classification cortical model, HMAX. Compared to a CPU implementation, this hardware accelerator offers 23X (89X) speedup when mapped to a single-FPGA (multi-FPGA) platform, while maintaining a classification accuracy of 92.5%.

Index Terms: Neuromorphic vision algorithms, FPGA, Signal Processing, Hardware, Neuromorphic Hardware Architecture

1 INTRODUCTION

In the last three decades, neuroscientists have made a number of breakthroughs in understanding the ventral and dorsal pathways of the mammalian visual cortex. These advances have inspired a number of computer vision algorithms – collectively referred to as “neuromorphic vision algorithms”. Neuromorphic algorithms are derived by reverse-engineering the mammalian brain to produce vision algorithms that are both efficient and robust. Additionally, neuromorphic vision algorithms are promising alternatives to classical computer vision approaches [1], where extracting objects of interest and classifying them are based on cortical models describing the brain [2,3]. The Riesenhuber & Poggio model, also referred to as HMAX [3], is an example of a biologically-inspired algorithm used for object recognition. Despite its highly accurate performance and robustness, HMAX exhibits a relatively slow run time when implemented on standard general purpose processors. This makes a real-time realization of the algorithm a challenging task, especially when targeting the algorithm for small-footprint embedded systems with limited computational resources and power constraints.

Today, Field-Programmable Gate Arrays’ (FPGAs) are serious contenders to general purpose processors and are being used in a range of application domains including robotics, medicine, image processing, and video analytics. Recently announced FPGAs, now at the 28nm node, contain over 1,955,000 logic cells [4], providing FPGAs with unprecedented computational power while maintaining a minimal power footprint. With the increases in available FPGA resources, it is unsurprising that FPGAs are gaining popularity for accelerating neuromorphic vision algorithms [5,6].

This paper describes a hardware architecture for accelerating the HMAX model by exploiting the massively parallel resources on FPGA devices. Compared to a CPU implementation of the HMAX model, these accelerators achieve 23X speedup when mapped to a single FPGA device and 89X speedup when mapped to a multi-FPGA platform. The accuracy of the FPGA implementation is maintained at 92.5%. Additionally, for applications where the accuracy can be traded off for speedup, this paper also describes a faster implementation with 64.5% classification accuracy.

The remainder of the paper is organized as follows. Section 2 describes HMAX, a cortical model for object classification. Section 3 discusses the architecture of the hardware accelerator and provides a high-level assessment of the accelerator. Section 4 discusses a number of proposed performance-boosting optimizations and an alternative design. Section 5 presents a discussion of the results. Finally, section 6 concludes the paper.

2 HMAX MODEL

HMAX (“Hierarchical Model and X”) is a model of the ventral visual pathway from the visual cortex to the inferotemporal cortex, IT. This model attempts to provide space and scale invariant object recognition by building complex features from a set of simple features in a
hierarchical fashion. The reader is encouraged to consult [3,7] for an in-depth treatment of the topic. While several
versions of HMAX exist, the version used for this work was
an extension developed by Mutch & Lowe [1].

As illustrated in Figure 1, the HMAX model consists of a
preprocessing stage S0 and 4 cortical stages referred to as S1,
S2, S3 and S4. The S0 stage provides scale invariance by
down-sampling the input image to generate an initial image
pyramid that is fed to the S1 stage. Gabor filters are used to
implement the S1 stage since they have been shown to “provide
a good model of cortical simple cell receptive fields” [7]. The
C1 stage pools over the output of the S1 stage and finds the
local maximum value over adjacent scales over the same
orientations. The output of the C1 stage is pooled over by the
S2 stage, which performs correlation operation on the C1
output against a stored dictionary of fuzzy prototypes
gathered from natural images. The last stage in the HMAX
model is C2, which computes the global maxima over all
scales and positions – producing a feature vector that is fed
to a classifier to perform final object classification.

A CPU reference of HMAX was implemented on an Intel
S7000FC4UR server containing a quad-core 3.2 GHz Xeon
processor and 24GB of system memory. The reference
implementation was originally developed in C++. The
percentage of execution time for each stage is shown in
Figure 1. S2 is the most computationally complex layer as it
attempts to match a set of 4x4xm, 8x8xm, 12x12xm, and
16x16xm prototypes, which have been randomly sampled
from a set of natural images during training stage. The value
of m represents the number of orientations extracted from the
original image during the S0 stage and typical values for m
are between 4 and 12 (CPU reference uses 12). These
prototypes make up a patch dictionary consisting of 5000
entries which are used as fuzzy templates consisting of
simple features that are position and scale invariant. S2 then
computes the response of a patch, X, of C1 units, to a
particular S1 feature prototype, P, of size n x n x m (n = 4, 8,
12, 16). This response is given by the normalized dot
product:

\[R(X,P) = \frac{X \cdot P}{\|X\|^2 - (\Sigma_{i=1}^{m} X_i)^2} \]

Figure 2 shows the pseudo code for computing the S2
response for a given input image. The outer loop is a result of
the m image pyramids that are generated prior to S1 and then
pooled (across scales) during C1. The inner loops are due to
the 5000 prototype patches which consist of 12 orientations
each.

The bottleneck of HMAX is the S2 stage. The following
section discusses a hardware architecture for accelerating the
S2 stage. Note that although the discussion is limited to S2
accelerator only, all other stages were implemented and
mapped to FPGA. However, due to space limitations we
focus on S2 accelerator since it contributed the most to the
overall HMAX speedup.

3 S2 HARDWARE ACCELERATOR

The S2 stage performs template-matching operation through
correlation filtering. A stream-based correlation is proposed,
in which the input image is streamed into a convolution
network allowing the correlation filter to perform the MAC
operations in parallel. This consists of a multi-tap, kernel-size-configuration correlation filter depicted in Figure 3, in
order to support all four kernel-sizes: 4x4, 8x8, 12x12 and
16x16. The filter is composed of sixteen 1D filters as shown
in Figure 3 (top). The user can configure the filter with the
desired kernel size at runtime and choose the output from the
corresponding tap (See bottom-left of Figure 3). The outputs
of all 1D filters are accumulated using adder-tree architecture
as illustrated in Figure 3 (bottom-right).
The HMAX accelerators are ported to a packet-switched routing infrastructure developed to allow the accelerators to communicate and share data with one another. Preliminary results show that the accelerated HMAX achieves a speedup of 3.91X compared to a CPU implementation of the HMAX model. Based on these results, a high-level analysis of the S_2 accelerator is performed to identify the performance bottlenecks. Consequently, a number of optimizations are proposed to improve the performance.

3.1 An Assessment of the S_2 Accelerator

This subsection evaluates the S_2 accelerator architecture described above. An overview of the operations in the S_2 accelerator is described below:

- First, configurations such as kernel size and image size are transferred from the user to the S_2 accelerator on the FPGA. The time to transfer the configurations is denoted by T_{config}.
- Then, the prototype patch (i.e., correlation coefficients) is transferred to the S_2 accelerator. The time to transfer the patch is denoted by T_{coeff}.
- After that, the input image is transferred to the S_2 accelerator. The time to write the image to the accelerator is denoted by T_{image}.
- As the image is being streamed into the accelerator, the S_2 unit starts to perform the correlation operation. The time to compute the correlation is denoted by T_{compute}. Note that T_{image_delta} represents the time between the image being streamed into S_2 accelerator and the time S_2 starts computation. T_{image_delta} is important because it is the fraction of T_{image} that is not masked by T_{compute}.
- Finally, the results are transferred back to the user. The time to transfer the results is denoted by T_{results}.

Figure 4 illustrates the process described above. The figure shows the percentage of execution time for each stage when processing the largest scale. It is evident that the three major contributors to S_2 total execution time are T_{image}, T_{compute}, and T_{results}. On the other hand, T_{config} can be ignored since its execution time is insignificant and it occurs infrequently (i.e., only when kernel size or image size changes). Finally, it is observed that T_{coeff} execution time is relatively insignificant; however, this transaction occurs frequently (~5000 times per image scale for each orientation). Based on these observations, the following section proposes a number of hardware optimizations that target reducing these critical paths.

4 S_2 ACCELERATOR HARDWARE OPTIMIZATIONS

Based on the assessment presented in the previous section, the following is a discussion of a number of proposed optimizations that reduce the overall execution time of the S_2 accelerator.

4.1 Optimization #1: Reducing T_{results}

In the initial design of the S_2 accelerator, the output is stored in a First-In-First-Out (FIFO) queue. When the results are
read from the accelerator, they are streamed out one pixel at a time (i.e. the rate at which the S₂ is capable of producing results). However, the underlying routing infrastructure can support 4-pixel transaction per clock cycle. This means that the output interface of the S₂ accelerator has degraded the transfer rate by 75%.

To resolve this issue, an “aspect-ratio” FIFO which packs every 4 pixels into a single data chunk, is added at the output interface of the S₂ accelerator. This optimization allows the S₂ output rate to match that of the underlying routing infrastructure.

4.2 Optimization #2: Reducing occurrence of T_{results}

In the HMAX model, S₂ performs correlation filtering across all 12 orientations for each scale. In addition, the model accumulates the correlation results for all 12 orientations. The initial S₂ architecture doesn’t perform this accumulation internally. Therefore, every orientation streaming transaction is associated with a request to read the results. This can be alleviated by modifying the S₂ accelerator such that accumulation of the results is done internally, hence reducing T_{results} to only 1 per 12 orientations. This is implemented in hardware by adding a temporary storage, referred to as Accumulation Memory, to store the output of each correlation. Then, as S₂ produces output of the next orientation, hardware logic reads the corresponding accumulated output of the previous correlation from memory, updates it with the current output and writes the result back to the Accumulation Memory. The logic was designed such that accumulation is done on the fly in order to sustain a throughput of one accumulation per cycle. At the end of the 12th orientation, the accumulated result is transferred to the user. Figure 5 illustrates the proposed architectural modifications including optimizations #1 & #2.

4.3 Optimization #3: Reducing occurrence of T_{image}

Each time a correlation result needs to be computed, an image orientation must be streamed into the S₂ accelerator. Consequently, the same orientation must be streamed repeatedly each time a new prototype patch is loaded to the accelerator, leading to a total of 542172 image writes (Image orientations can be correlated with prototypes patches that are less or equal size). This enormous number of writes has a significant impact on the performance. Therefore, to avoid this unnecessary streaming of image orientations, a temporary storage, referred to as Image Memory, is introduced at the input interface of the S₂ accelerator. This temporary storage can accommodate all 12 orientations of the same scale. Additional control logic is added to manage streaming the orientations internally. This architectural modification reduced number of image writes to only 132 per image.

4.4 Optimization #4: Resource Duplication

By taking advantage of the available resources on the Multi-FPGA system hosted by the development platform, a total of 4 S₂ accelerators were mapped to a multi-FPGA system. This duplication of the accelerators allowed the correlation operations to be held in parallel.

4.5 An Alternative S₂ Design: Network-Configurable S₂ Architecture

This section describes an alternative architectural design of the S₂ accelerator. As described above, the S₂ accelerator needs to support four kernel sizes: 4x4, 8x8, 12x12 and 16x16. A configurable correlation filter (convolver) is proposed to implement these kernels that maximize the hardware utilization for three of the four kernel sizes.

The basic building block is a 4x4 convolver built with four 4-tap pipelined FIR filters as shown in Figure 6. The inputs to the FIR filters are fed from a serial-to-parallel FIFO; the outputs of the four filters are accumulated using an adder tree. The larger filters (8x8, 12x12 and 16x16) are built using the 4x4 filter.

Figure 7 shows a configurable filter capable of supporting kernel sizes of 4x4 and 8x8. When only 4x4 kernel size is required, the outputs of 4x4 filters A, B, C and D are directly sent to the adder tree. When 8x8 kernel size is required, the outputs of convolvers A and B are fed to convolvers C and D. The inputs of filters A and B are fed by the configurable FIFO array built with two cascaded 1-to-4 FIFOs. For the 8x8 correlation filter, the adder tree sums up the eight outputs from convolvers C and D and produces the final result. The multiplexers route the data according to the kernel size chosen by the user. Similarly, four 8x8 filters can be used to form a 16x16 filter, as depicted in Figure 8, and it can be configured as sixteen 4x4 or four 8x8 correlation filters. The 16x16 filter also supports 12x12 correlation operation, where only nine 4x4 filters are used while the other seven are disabled.

The hardware utilization of the S₂ accelerator is 100% for most of the kernel sizes. There is no idle 4x4 filter during computation, except for 12x12 2D correlation filter. Since it is a pipelined design, the S₂ unit’s throughput is 1 pixel/cycle for 12x12/16x16 kernel, 4 pixels/cycle for 8x8 kernel, or 16 pixels/cycle for 4x4 kernel.

Figure 5. Adding aspect-ratio FIFO and accumulation memory

Figure 6. Building block: 4x4 correlation filter
5 RESULTS

5.1 Experiment Setup
An FPGA development system from Nallatech [8] is used to conduct the experiments. The system houses an Intel S7000FC4UR motherboard with a quad-core Xeon processor running at 3.2 GHz, with a total of 24 GB system memory. The motherboard uses Front Side Bus (FSB) to interface to a multi-FPGA acceleration module. FSB is a 64-bit bus running at a frequency of 1066 MHz allowing data transfer rates of up to 5.8 GB/s sustained read (i.e. System Memory to FPGA), and 2.8 GB/s sustained write (i.e. FPGA to System Memory). The multi-FPGA acceleration module contains four Virtex-5 SX-240T FPGAs [9]. All FPGAs operate at 80 MHz.

The accelerators were tested using Caltech 101 data set [10], using 200 images selected from 4 different categories: cannon, car side, pyramid and ketch. HMAX produces a feature vector that is used as an input to a regularized least-square classifier, which is trained with 15 images from each category.

5.2 Resource Utilization vs. Accuracy
The bit width of the input image determines the consumed resources on the FPGA. At the same time, increasing the bit width impacts the accuracy of the output results. Table 1 shows a tradeoff between consumed resources and accuracy of the results for different input bit width implementation of the S2 accelerator. This analysis is useful when mapping the S2 accelerator to different platforms. For instance, if S2 accelerator is to be mapped to Xilinx Virtex 5 FX-130T device [9], which only has 320 DSP48 slices, then the table suggests that a maximum of 21-bit input image should be used. However, more freedom is given when mapping the accelerator to Xilinx Virtex 5 SX-240T device [9], which has

<table>
<thead>
<tr>
<th>Input</th>
<th>Consumed Resources</th>
<th>Average Discrepancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>Reg. Slices</td>
<td>LUT Slices</td>
</tr>
<tr>
<td>21</td>
<td>46944</td>
<td>42172</td>
</tr>
<tr>
<td>25</td>
<td>56640</td>
<td>43772</td>
</tr>
<tr>
<td>32</td>
<td>69504</td>
<td>47404</td>
</tr>
</tbody>
</table>

Table 2. Object classification accuracy for the three platforms.

<table>
<thead>
<tr>
<th>Platform</th>
<th># scales</th>
<th># orient.</th>
<th># prototypes</th>
<th>Accuracy (%)</th>
<th>Exec. time/image (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>12</td>
<td>12</td>
<td>5000</td>
<td>92.5</td>
<td>222</td>
</tr>
<tr>
<td>FPGA</td>
<td>12</td>
<td>12</td>
<td>5000</td>
<td>92.5</td>
<td>11</td>
</tr>
<tr>
<td>Reduced FPGA</td>
<td>7</td>
<td>12</td>
<td>3439</td>
<td>64.5</td>
<td>2</td>
</tr>
</tbody>
</table>

5.3 Accelerated HMAX Classification Accuracy
A total of 200 images were used for testing three different platforms. The first platform represents a CPU implementation of the HMAX model [1]. The second platform is an accelerated HMAX running with all scales, all orientations and a total of 5000 S2 prototype patches. The third platform is an accelerated “reduced” HMAX. The reduced HMAX uses only 7 scales, 12 orientations and 3439 prototype patches. Also, the reduced HMAX supports kernel sizes of 4x4 and 8x8 only. Both second and third platforms are mapped to a Xilinx Virtex SX-240T FPGA device on the Nallatech development system.

Table 2 shows the classification accuracy of the three platforms described above, along with the execution time per image. The first and second platforms scored a classification accuracy of 92.5%. This indicates that accelerated HMAX running on FPGA maintained the accuracy of CPU implementation. On the other hand, the “reduced” version of the accelerated HMAX exhibits degradation in accuracy down to 64.5%. However, the execution time of the third platform was reduced to 2 seconds. Therefore, the reduced version of HMAX can be used for applications where more speedup is required on the expense of a reasonable accuracy loss. Moreover, this “reduced” version of accelerated HMAX can be mapped to small-footprint, low power FPGA devices such the Virtex-5 FX-70T [9] allowing the realization of HMAX on actual embedded systems. Also, it is observed that increasing the input bit width didn’t improve the accuracy of the “reduced” HMAX.

5.4 HMAX Accelerator Speedup Performance
Figure 9 shows the speedup in execution time gained by each implementation of S2 accelerator. All speedups shown in the
Figure 9. Speedup comparison between different S2 implementations, normalized to CPU implementation of HMAX. The figure are normalized to the CPU implementation of the HMAX model. The initial design of the S2 acceleration, denoted by S2-Base, gave a speed up of 3.91X. S2-O1 represents the implementation of optimization #1, which yielded 4.46X speedup. S2-O1-2 which represents the combined implementation of optimizations #1 and #2, gave 9.29X speedup. Similarly, S2-O1-3 which represents the combined implementation of optimizations #1, #2 and #3, delivered 20.27X speedup. Moreover, S2-O1-4, which implements all four optimizations, yielded 89.20X speedup.

On the other hand, the alternative design of the S2 accelerator, denoted by S2-Net, results in a speedup of 23.72X. Note that S2-Net incorporates the first optimization only (i.e. aspect-ratio output FIFO). In addition, the performance gained by incorporating the first three optimizations to S2-Net (denoted by S2-Net-O3) is estimated to be 117.37X. Finally, the accelerated “reduced” HMAX gave an overall speedup of 110.44X, outperforming the S2-O1-4, although it is mapped to a single FPGA only.

In addition, a GPU implementation of a sparse version of HMAX from [1] is compared to the FPGA implementation. This version has only 4075 prototype patches and all 12 orientations for every scale are condensed into a single orientation. It takes 0.291 seconds per image to execute on Nvidia GTX 295 GPGPU. In contrast, when mapped to a 4-FPGA platform, an accelerated sparse version of the HMAX executes in 0.277 seconds, giving a speedup of 5.1% over the GPU implementation. However, power measurements show that the FPGAs running at 24 Watts has a clear advantage when compared to the GTX 295 running at TDP of 289 Watts [11].

6 CONCLUSION

This paper presented a hardware architecture for accelerating HMAX, a cortical model for object classification. Although the focus was on S2 acceleration, which is the bottleneck, all other stages in the HMAX model were also mapped to the FPGA device.

The S2 accelerator was evaluated, and a number of optimizations were proposed to improve its execution time. Moreover, an alternative design to the S2 accelerator was discussed. For small size patches (i.e. 4x4 & 8x8), this design allows streaming a single image while computing the correlation against multiple prototype patches, hence parallelizing the operations of the S2 stage.

The classification results were presented and it was shown that the accuracy of the accelerated HMAX matches that of the CPU implementation. Furthermore, a “reduced” version of the HMAX model was implemented and found to have a much faster processing rate at the expense of reduced accuracy. These tradeoffs between speedup, power and resources on one side and accuracy on another can be utilized for embedded systems with limited resources.

For future work, further optimizations to the S2 accelerator will take place. For example, although the Tcoeff contributes by only 3% of the total execution time, it occurs with high frequency. This latency can be hidden by double buffering the prototype patches.

Acknowledgment

This work is funded in part by DARPA’s NeoVision 2 program. Ahmed Al Maashri is sponsored by a scholarship from the Government of Oman.

7 REFERENCES