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This article proposes and evaluates a method to test for mediation in multilevel data sets formed
when an intervention administered to intact groups is designed to produce change in individual
mediator and outcome variables. Simulated data of this form were used to compare ordinary
least squares (OLS) and two multilevel estimators of the mediated effect. OLS and multilevel
standard error approximations were also evaluated and recommendations given for optimal
estimator choice. These methods were applied to data from an existing substance use interven-
tion to show the impact multilevel mediation modeling can have on the conclusions drawn from
real-world evaluation studies.
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Most prevention programs are based on theory of individual behavior.
Consequently, the success of a prevention program is measured by its effect
on individuals. Often, however, individuals are clustered within intact
groups, and for practical reasons, the prevention intervention is randomized
and administered at the group level. The groups involved in such a design
may include classes or schools in educational contexts, hospitals or other
treatment sites in clinical contexts, companies or offices in organizational
contexts, and neighborhoods, counties, states, or countries in geographical
contexts. When intact groups are assigned to conditions and observations are
made on individuals within these groups, a multilevel data set is formed. The
independent variable, assignment to intervention or control condition, is a
group level variable, and the dependent variable is measured at the individual
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level. Overcoming the difficulties introduced by the structure of multilevel
data has been a focus of much research during the past 20 years. Generally
accepted methods of dealing with such data have been developed (Bryk and
Raudenbush 1992; Goldstein 1995), and applications are now appearing in
the applied research literature. However, several topics remain unresolved.
The purpose of this article is to describe methods to assess mediated effects in
multilevel data.

TRADITIONAL ANALYSES OF MULTILEVEL DATA

Traditional analytical techniques, such as ordinary least squares (OLS)
regression, are typically limited to single level data. Applying traditional
techniques to multilevel data requires restructuring the data set to eliminate
one level of the hierarchy. The group level data can be disaggregated and ana-
lyzed as if all variables were measured at the individual level, or the individ-
ual level data can be aggregated and the analysis conducted at the group level
(de Leeuw 1992; de Leeuw and Kreft 1986). Both of these approaches
involve potential drawbacks.

In the disaggregation approach, all individuals within a group are assigned
an identical score on the group level variable as if this were an observation
unique to the individual. Any error associated with this group measure will be
identical for all group members. Additionally, the individuals within a given
group may be more similar to each other than they are to members of other
groups on any number of unmeasured variables. Intraclass correlation (ICC)
is a measure of the extent of this within-group homogeneity (Haggard 1958,
6). Common error associated with the group level predictor and the unmeas-
ured similarities among group members will result in correlated error terms
among the individuals within a group and nonzero ICC. Because traditional
analysis techniques typically assume independent and identically distributed
error terms, employing such methods to analyze multilevel data violates
assumptions, producing inefficient estimates and, more importantly, biased
standard errors and overly liberal inferences (Hanushek and Jackson 1977,
145-146, 156-157; Moulton 1986; Scott and Holt 1982). With even small
ICCs, the actual probability of making a Type I error can be much higher than
the nominal alpha level of the test (Barcikowski 1981; Scariano and Daven-
port 1987; Walsh 1947), particularly when group sizes are large.

The alternative to the disaggregation approach, aggregating all individual
level data to the group level, is also quite limiting. When individual level data
are aggregated by computing group means, the number of observations in the
analysis is reduced from the number of individuals to the number of groups,
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decreasing the power of tests to detect effects of one variable on another.
Also, discarding individual observations eliminates the ability to predict
individual level variation, which may comprise the majority of the total varia-
tion present in the data (de Leeuw 1992). Moreover, in many intervention
studies, the individual level effects are of primary interest, and the results of
an aggregated group level analysis cannot necessarily be used to draw infer-
ences at the individual level. Indeed, individual and group level analyses of
the same data may indicate relationships that differ in both magnitude and
direction (Robinson 1950), and making individual level inferences based on
group level relationships has come to be known as the “ecological fallacy”
(Pedhazur 1982, 529). Although clear evidence of the ecological fallacy has
not yet been observed in the analysis of randomized interventions, research-
ers must be careful to confine all statements based on the results of an analy-
sis to the particular level at which the analysis was conducted.

MULTILEVEL MODELING

Multilevel data can be analyzed without artificially restructuring the data
by employing random coefficient multilevel models. These models can
simultaneously examine effects of both individual and group level variables
on an individual level outcome. Moreover, the correlated errors and nonzero
ICC inherent in grouped data are appropriately incorporated in multilevel
models, giving accurate standard error estimates and inferences.

A multilevel model may be conceptualized as a series of models at the dif-
ferent data levels. At the lowest level of the hierarchy, a linear model is con-
structed relating individual level predictors to the individual level outcome.
Consider, for example, a situation with an individual level outcomeYij and a
single individual level predictorXij. The double subscript for these variables
indicates that the observations are unique for each individuali within each
groupj. The relationship between the two variables is modeled with a linear
equation within each group.

Yij = β0j + β1j Xij + εij.

A key feature of multilevel models is that the coefficients associated with the
intercept and theX slope in this individual level equation can be allowed to
vary across groups. The subscripts for theβ coefficients in this lowest level
equation indicate that they can differ for each groupj. The observed coeffi-
cient values are viewed as realizations drawn from distributions of possible
values of intercepts and slopes. These coefficient values, then, can be used as
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outcome variables in group level equations, which can be predicted by group
level variablesWj.

β0j = γ00 + γ01Wj + u0j

β1j = γ10 + γ11Wj + u1j.

Forming prediction equations at each of the different levels of the hierarchy
in this manner accommodates individual and family level predictors in a sin-
gle multilevel analysis. The specification of error terms at both the individual
(ε) and group (u) levels allows multilevel models to appropriately model the
error in grouped data (i.e., nonzero ICC).

The series of level-specific models is combined algebraically into a single
model for the estimation of parameters, allowing the estimation of fixed
effects (γ parameters) without actually estimating the individual level model
within each group. In addition to these estimates of fixed effects, multilevel
analyses also produce estimates of the variances and covariances of theε and
u error terms, known as the variance components. More detailed discussion
of multilevel procedures can be found in Bryk and Raudenbush (1992), Gold-
stein (1995), Kreft and de Leeuw (1998), and Longford (1993).

Many researchers have recognized the appropriateness of multilevel mod-
eling for group-based interventions and have used this analysis technique to
examine intervention effects. Seltzer (1994) illustrated how multilevel mod-
els can incorporate the dependency present in grouped data and simultane-
ously examine the effects of variables at the individual and the group level in
the evaluation of a mathematics curriculum. Other researchers have used
multilevel modeling to evaluate school-based interventions on substance use
behaviors, knowledge, and attitudes, both in terms of overall program effects
and in interaction with student and school level characteristics (DeVries et al.
1994; Hedeker, Gibbons, and Flay 1994; Kreft 1994, 1997; Murray et al.
1992).

MEDIATION IN SINGLE LEVEL MODELS

In addition to determining whether an intervention has its desired effect on
the outcome, many researchers are also interested in identifying the
processes that bring about these effects. Mediational analysis is a method for
examining such processes. Components of an intervention program are
designed to change specific mediational constructs, which are believed to
cause changes in the outcome variable (MacKinnon and Dwyer 1993).
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Research examining the mechanisms by which prevention programs achieve
their effects have begun to appear in the evaluation of drug use prevention
(MacKinnon et al. 1991; Donaldson, Graham, and Hansen 1994) and reem-
ployment (Vinokur and Schul 1997) programs. For example, the Adolescents
Training and Learning to Avoid Steroids (ATLAS) program, which will be
discussed in greater detail in a later section of this article, is an intervention
designed to directly change a number of mediators (e.g., peer influences) that
are believed to ultimately affect steroid use. Figure 1 illustrates such a media-
tional model in which an intervention (X) affects a mediator (M), which in
turn affects the outcome (Y).

In models involving only a single level of data, point estimates of the
mediated effect can be calculated in two ways (MacKinnon, Warsi, and
Dwyer 1995). Each of the two methods requires the estimation of two regres-
sion equations. The first of these methods involves estimating

Y = k + cX+ ε (1)

and

Y = k + c¢X + bM + ε. (2)

Equation 1 estimates the effect of the interventionXon the outcome measure
Y. Theccoefficient in this equation represents the total effect of the interven-
tion on the outcome, without taking the mediator into account. The second
equation estimates the simultaneous effects of both the interventionXand the
mediatorM on the outcome. In this equation, thec′ coefficient represents the
effect of the intervention on the outcome, with the effect of the mediator sta-
tistically removed. The difference between thec andc′ coefficients associ-
ated with the intervention variableX in the two equations is an estimate of the
mediated effect (Judd and Kenny 1981). Thisc – c′ difference measures the
extent to which the mediator in Equation 2 accounts for the relationship be-
tween the intervention and outcome assessed in Equation 1.

The second method for calculating point estimates of mediated effects
requires estimating the two equations

M = k + aX+ ε (3)

and

Y = k + c′X + bM + ε. (2)

In Equation 3, theacoefficient is an estimate of the effect of the intervention
on the mediator. The second equation is identical to Equation 2 from the first
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method for calculating point estimates of the mediated effect. However, in
this case, the focus is on thebcoefficient, the effect of the mediator on the out-
come variable, rather than on thec′ coefficient, as in the previous method.
The product of the two estimated coefficients,ab, is an estimate of the medi-
ated effect. This method makes explicit that the estimate of the mediated ef-
fect depends on the extent to which the intervention affects the mediator and
the extent to which the mediator affects the outcome. The two methods of cal-
culation,c – c′ andab, produce algebraically equivalent estimates for single
level models (MacKinnon, Warsi, and Dwyer 1995).

The ab point estimate of the mediated effect calculated by the second
method can be considered the product of two random variables (Sobel 1982),
and methods for determining the variance of a product of random variables
can provide estimates for the standard error of the mediated effect, which can
be used in forming interval estimates and in conducting significance tests.
These methods are based on large sample theory and are thus approximate for
small samples. As outlined in MacKinnon, Warsi, and Dwyer (1995), esti-
mates of the standard error of the mediated effect can be calculated in a
number of different ways, including (a) first-order Taylor series expansion or
the multivariate delta method (Sobel 1982; 1986):

s s b s a
ab a b

= +2 2 2 2 ;

(b) second-order Taylor series expansion or exact variance under the condi-
tion of independence (Goodman 1960; Mood, Graybill, and Boes 1974):

s s b s a s s
ab a b a b

= + +2 2 2 2 2 2 ;
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or (c) the estimate of unbiased variance (Goodman 1960):

s s b s a s s
ab a b a b

= + −2 2 2 2 2 2 .

In models involving only a single level of data, each of these standard error
estimates is calculated using estimates ofa andb and their associated stan-
dard errorssa andsb obtained from OLS estimation of Equations 2 and 3.

MULTILEVEL MEDIATION

In prevention intervention studies, the mediational effects that are of par-
ticular interest are those that explain the relationship between the interven-
tion program and the outcome measure. When the program is randomized
and administered at the group level and the outcome measure is assessed at
the individual level, multilevel mediational analysis is most appropriate.
Each of the three equations described above in the context of a single level
analysis can be reformulated as a multilevel model. Table 1 shows the single
level expressions for each of the three equations and the multilevel expres-
sion equivalent to each.

Equation 1 shows the OLS and multilevel equivalent specifications for
determining the effect of the interventionXon the outcome measureY, ignor-
ing (for the moment) the mediator. Although the OLS equation assumes that
XandYare at the same level, the multilevel specification clearly shows thatY
is an individual level outcome, and the interventionX is a group level predic-
tor. Also, although the OLS specification contains only a single error termε,
the multilevel version contains error terms as both levels,ε andu, to appropri-
ately model the error in the grouped data. Equations 2 and 3 are similar: The
multilevel equations include the individual levelYandM variables in individ-
ual level equations, while the group levelX predictor appears in group level
equations. Multilevel Equations 2 and 3 also include error terms at both levels
to accommodate the dependency in grouped data. To parallel the single level
OLS analyses as closely as possible, only the intercept terms of the multilevel
models are treated as random, and thebcoefficient (the slope associated with
the effect of the mediator on the outcome) in the multilevel Equation 2 is
fixed.

Although Table 1 shows that each OLS equation necessary for media-
tional analysis can be reformulated as a multilevel model, some of the rela-
tionships found in single level mediational models do not hold for multilevel
mediational models. Specifically, the two different point estimates of the
mediated effect,c – c′ andab, are algebraically equivalent in single level
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models, but the equivalence does not hold in the multilevel framework. Cor-
respondingly, the basic decomposition of the total effect into a direct effect
and an indirect (mediated) effect does not hold for multilevel models. Esti-
mates of direct and indirect effects will not necessarily sum to the estimate of
the total effect if estimates of the different effects are generated using differ-
ent multilevel equations. The reason for these discrepancies lies in the nature
of multilevel estimation.

Procedures for estimating multilevel models differ from standard OLS
estimation in that multilevel estimation is iterative in nature. The fixed effects
and variance component parameters of the model are estimated in separate
steps, using current estimates of one parameter type in updating estimates of
the other. The estimates of the fixed effects in a multilevel model, given esti-
mates of the variance components, are generated via a generalized least
squares expression, (X¢VX) –1X¢VY. This differs from the expression used to
generate OLS estimates, (X¢X)–1X¢Y, only in the use of a weighting matrix
V. The elements that make up thisVmatrix are functions of the variance com-
ponent estimates. Estimating Equations 1, 2, and 3 to perform a mediational
analysis requires estimating 3 different multilevel models, and the variance
components and theVmatrices produced by each estimation process will dif-
fer. Consider, for example, theεij terms in multilevel expressions of Equation 1
and Equation 3. In Equation 1, this term represents the residual error in the
outcome measure after adjusting for program participation. In Equation 3,
this term represents the residual error in the mediator after adjusting for pro-
gram participation. Because the twoεij terms are associated with different
measures, these errors will, of course, be different, and theV matrices con-
structed using estimates of the corresponding variance components will dif-
fer as well. Unless the threeVmatrices are identical, the algebraic equivalen-
cies of effect decomposition and mediational analysis will not hold.

Krull, MacKinnon / GROUP-BASED INTERVENTION STUDIES 425

TABLE 1: OLS and Multilevel Expressions for the Three Mediational Analysis
Equations

OLS Multilevel

Equation 1 Y = k + cX + ε Individual Level: Yij = β0j + εij
Group Level: β0j = γ00 + cXj + u0j

Equation 2 Y = k + c ′X + bM + ε Individual Level: Yij = β0j + bMij + εij
Group Level: β0j = γ00 + c ′Xj + u0j

Equation 3 M = k + aX + ε Individual Level: Mij = β0j + εij
Group Level: β0j = γ00 + a¢Xj + u0j

NOTE: OLS = ordinary least squares.



As with the three equations for estimating mediated effects, single level
methods for estimating the standard error of the mediated effect also can be
reformulated for multilevel models. This straightforward adaptation simply
requires computing the first-order Taylor series estimator, the second-order
Taylor series estimator, or the unbiased estimator using estimates ofa andb
and their standard errors that are generated by the iterative estimation of a
multilevel model in place of those typically generated through OLS analysis
of a single level model. However, because these are large sample approxima-
tions, the adequacy of their performance in small samples requires study.

The purpose of this article is to examine the performance of multilevel
mediational analysis in a simulated data set and in an existing prevention
intervention data set. The simulation study was designed to answer several
specific questions. First, given that multilevel estimates of the mediated
effect produced using thec – c′ andab methods will not be algebraically
equivalent, how discrepant are the values likely to be? Second, is there any
reason to prefer one estimate over the other? And finally, how well do the
various large-sample-based approximations of the standard error of the
mediated effect in multilevel data perform in small samples? Following this,
OLS and multilevel mediational analyses of an existing prevention interven-
tion data set are used to illustrate the differences between the two types of
analyses in a real-world application. These comparisons allow the researcher
to determine whether the improvements made through the use of multilevel
mediational analysis warrant the additional complexity in model specifica-
tion and estimation inherent in the multilevel framework.

SIMULATION STUDY

The SAS programming language was used to generate simulated multi-
level data sets reflecting the form of an intervention study with randomiza-
tion at the group level. Data were created according to the single mediator
model depicted in Figure 2. The RANNOR function within SAS was used to
create a dichotomous independent variable,X, representing assignment to
intervention or control conditions. The other variables in the model, the
mediatorM and the outcomeY, were created as individual level variables
according to the relationships specified in the single mediator model shown
in Figure 2.

Two aspects of sample size, the number of groups and group size, were
systematically varied in simulating the data for this study. Simulated data sets
were composed of 10, 20, 30, 50, 100, or 200 groups. These groups were of
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either small or moderate size. For the small group size conditions, half of the
groups were composed of 5 individuals, the other half of 10 individuals. For
the moderate group size conditions, half of the groups were made up of 20
individuals, the other half of 30 individuals.

In the simulated model, the parametersa (representing the effect of the
intervention on the mediator) andb (representing the effect of the mediator
on the outcome) could take on three different values: .1, .3, and .5. Trueaand
b values were set equal in each model, and thec′ parameter (representing the
direct effect of the intervention on the outcome) was set to a constant value of
.1. These values ofaandbare among those used in previous simulation stud-
ies of mediational models (e.g., MacKinnon, Warsi, and Dwyer 1995).
Moreover, the true values of the mediated effectab(.01, .09, and .25) reflect
those observed in intervention studies. For example, these values correspond
quite well to mediated effect values found in the analysis of a substance use
intervention (MacKinnon, Goldberg, Clarke, et al. 1999), in which single
mediator analyses of 18 possible mediators for each of three different
dependent variables revealed significant (p < .05) point estimates of medi-
ated effects ranging in magnitude from .01 to .27, with an average magnitude
of .07 (SD= .06).

The proportion of residual variance in the simulation outcome variable
due to between-group variability was systematically adjusted by changing
the variability of the group error terms,u0j, relative to the constant variability of
the individual error terms,εij, which was set equal to 1.0. Values were chosen
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so that the proportion of residual variance due to between-group variability
(residual ICC), calculated as Var (u0j) / (Var [εij] + Var [u0j]), was equal to .02,
.05, .10, .20, or .30. These values were chosen to be representative of actual
proportions that might be observed in intervention studies in a number of
areas, including psychology, education, and family studies. The proportion
of residual variance in the mediator due to between-group variability was
held constant at .10.

All possible combinations of the 6 values for the number of groups in the
analysis, the 2 group sizes, the 3 true values ofab, and the 5 values for the pro-
portion of residual variability at the between-group level were examined. A
total of 500 replications were conducted for each of the 180 conditions, pro-
ducing 90,000 simulated data sets for analysis.

Each data set was analyzed using the three equations necessary for media-
tional analysis discussed previously, in both the OLS (single level) and multi-
level frameworks. These analyses were carried out using the PROC REG and
PROC MIXED routines of the SAS system for the single level and multilevel
analyses, respectively. First-order Taylor series approximations were used to
estimate standard errors of both single level and multilevel mediated effects.

The resultant data were examined to determine (a) the extent of the differ-
ences between thec – c′ andabmultilevel estimates of the mediated effect,
(b) the relative bias and efficiency of the OLS and two multilevel estimators
of the mediated effect, and (c) the relative bias of estimates of the standard
error of the mediated effect. Relative bias (RB) was calculated using the
equation

RB =
−$w w

w
,

and efficiency was measured by calculating mean squared error (MSE) using
the equation

MSE = ($w – w)2,

where $w is an estimate of the mediated effect or its standard error, andw is the
true parameter value or an approximation of the true value when the precise
value is not known. True values of the mediated effect were theab= .01, .09,
or .25 values used in creation of the simulated data set. Empirical standard er-
rors, calculated as the standard deviation of mediated effect estimates across
the 500 replications in a given condition, were used as true value approxima-
tions in calculating the relative bias of the standard error estimates.

Following the recommendation of Hauck and Anderson (1984) that simu-
lation studies be analyzed using the same analytical tools as any other

428 EVALUATION REVIEW / AUGUST 1999



experimental study, factorial analyses of variance were conducted for each of
the outcome measures, using number of groups, group size, true value of the
mediated effect, and residual ICC of theY variable as predictors. In those
analyses involving comparisons among estimator types, estimation tech-
nique was treated as a repeated-measures factor, with single degree of free-
dom contrasts specified to focus on the comparisons of interest. Due to the
large number of observations, standard probability values were not particularly
useful cutoffs for distinguishing between meaningful and inconsequential
effects. Therefore, an effect size value of .01 or greater, calculated via

η2 =
+

SS

SS SS

effect

error effect

was used in most cases to identify important effects. This particular expres-
sion forη2 is used to estimate the effect size associated with a given effect in-
dependent of other effects included in the model. Using this expression, the
effect sizes are not directly interpretable as percentages of total variance, be-
cause effect sizes of the various effects in a given design may total more than
1.00 (Tabachnick and Fidell 1989, 55).

SIMULATION RESULTS

DISCREPANCY BETWEEN C – C¢ AND AB MULTILEVEL
ESTIMATES OF THE MEDIATED EFFECT

Table 2 shows the average discrepancy betweenc – c′ andabestimates of
the mediated effect produced using multilevel modeling techniques. For all
conditions, the average discrepancy was essentially zero. An ANOVA pre-
dicting this discrepancy from group size, number of groups, true value of the
mediated effect, and residual ICC of the outcome variable revealed no sig-
nificant main effects or interactions.

Also shown in Table 2 is the average absolute value of the discrepancy
between thec – c′ andab estimates of the mediated effect. ANOVA results
showed that the size of this absolute discrepancy was a function of group size,
F(1, 89820) = 8994.58,p< .0001,η2 = .09; number of groups,F(5, 89820) =
3264.27,p < .0001,η2 = .15; true value of the mediated effect,F(2, 89820) =
4140.30,p< .0001,η2 = .08; and the two-way interactions among these vari-
ables—for group size and number of groups,F(5, 89820) = 850.45,p <
.0001,η2 = .05; for number of groups and true value of the mediated effect,
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F(10, 89820) = 310.42,p< .0001,η2 = .03; for group size and true value of the
mediated effect,F(2, 89820) = 965.22,p < .0001,η2 = .02. The main effects
indicated that the absolute size of the discrepancy between the mediated
effect estimates was larger in conditions with smaller numbers of groups,
smaller group sizes, and larger true values of the mediated effect. Moreover,
these effects combined interactively so that the effects were stronger in com-
bination. However, although larger mediated effect values were associated
with larger absolute discrepancies, it should be pointed out that these larger
discrepancies represent proportionally smaller effects. For example, with 10
groups of 5 to 10 individuals, the average absolute discrepancy was .0047 for
a true mediated effect equal to .01, and this value was more than three times as
large, .0157, for a true mediated effect equal to .25. However, this discrep-
ancy is nearly half (47%) of the size of the true mediated effect value in the
.01 case, while the discrepancy is less than 7% of the size of the true mediated
effect value in the .25 case.

RELATIVE BIAS AND MSE OF OLS AND MULTILEVEL
ESTIMATES OF THE MEDIATED EFFECT

Table 3 presents the relative bias in point estimates of the mediated effect
produced by OLS and by the two multilevel estimators. There is essentially
no bias in any of these estimators. There were no significant differences
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TABLE 2: Average (ave) and Absolute (abs) Differences Between c – c¢ and ab
Estimates of the Mediated Effect by Number of Groups, Group Size,
and True Value of the Mediated Effect (true med)

Number of Groups

Group Size True Med Difference 10 20 30 50 100 200

5 to 10 .01 Ave –.0002 .0000 .0001 .0000 –.0000 .0000
Abs .0047 .0025 .0017 .0011 .0007 .0004

.09 Ave –.0000 –.0002 –.0000 –.0000 –.0000 –.0000
Abs .0108 .0064 .0047 .0031 .0019 .0012

.25 Ave –.0002 .0003 .0004 –.0001 –.0001 .0000
Abs .0157 .0099 .0074 .0050 .0031 .0020

20 to 30 .01 Ave .0000 –.0000 –.0000 –.0000 –.0000 –.0000
Abs .0013 .0007 .0005 .0004 .0002 .0002

.09 Ave –.0000 –.0001 –.0000 –.0000 .0000 –.0000
Abs .0035 .0022 .0016 .0011 .0007 .0005

.25 Ave –.0003 –.0000 –.0000 .0001 –.0000 .0000
Abs .0055 .0031 .0023 .0016 .0011 .0007



between the relative bias in the OLS estimator and the relative bias in the mul-
tilevel estimators, or between thec – c′ andabmultilevel estimators. Moreo-
ver, there were no significant differences in bias associated with the various
combinations of group size, number of groups, true value of the mediated
effect, and level of intraclass correlation examined in this study.

Table 4 presents the MSE values associated with the OLS and multilevel
point estimates of the mediated effect. The two multilevel estimators were
very slightly more efficient (i.e., had lower MSE values) than the OLS esti-
mator, but this effect accounted for only a very small portion of the variance
in MSE,F(1, 89820) = 111.42,p < .0001,η2 = .001. Similarly, theabmulti-
level estimator of the mediated effect was very slightly more efficient than the
c – c′ estimator, but this effect accounted for an even smaller portion of the
variance,F(1, 89820) = 7.59,p< .01,η2 = .00008. Greater efficiency (smaller
MSE) was found in conditions with larger numbers of groups,F(5, 89820) =
1917.60,p < .0001,η2 = .10; larger group sizes,F(1, 89820) = 929.58,p <
.0001,η2 = .01; and smaller true values of the mediated effect,F(2, 89820) =
3295.17,p < .0001,η2 = .07. Significant two-way interactions between
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TABLE 3: Relative Bias in OLS and Multilevel c – c¢ and ab Estimates of the Medi-
ated Effect by Number of Groups, Group Size, and True Value of the
Mediated Effect (true med)

Number of Groups

Group Size True Med Estimate 10 20 30 50 100 200

5 to 10 .01 OLS –.0731 –.0141 .0176 –.0437 .0438 .0108
c – c ′ –.0670 .0025 .0177 –.0385 .0369 .0097
ab –.0492 –.0001 .0107 –.0387 .0371 .0091

.09 OLS –.0295 –.0018 .0089 –.0242 –.0176 .0051
c – c ′ –.0298 –.0007 .0154 –.0255 –.0178 .0054
ab –.0295 .0017 .0153 –.0253 –.0175 .0056

.25 OLS .0282 .0020 .0056 .0124 –.0002 –.0014
c – c ′ .0334 .0021 .0092 .0102 .0001 –.0023
ab .0342 .0010 .0076 .0104 .0005 –.0025

20 to 30 .01 OLS .0591 .0246 –.0037 –.0381 –.0007 .0007
c – c ′ .0297 .0341 –.0057 –.0307 –.0036 .0033
ab .0271 .0363 –.0047 –.0305 –.0034 .0039

.09 OLS .0185 –.0079 .0045 .0111 .0011 –.0035
c – c ′ .0214 –.0052 .0050 .0104 –.0004 –.0033
ab .0216 –.0043 .0051 .0103 –.0006 –.0033

.25 OLS –.0068 .0030 .0049 –.0014 –.0024 –.0042
c – c ′ –.0084 .0043 .0058 –.0025 –.0023 –.0043
ab –.0072 .0043 .0059 –.0028 –.0023 –.0043

NOTE: OLS = ordinary least squares.



number of groups and group size,F(5, 89820) = 216.87,p < .0001,η2 = .01,
and between number of groups and the true value of the mediated effect,
F(10, 89820) = 590.80,p < .0001,η2 = .06, indicated that these effects were
even more pronounced in combination. All these effects operated similarly
for each of the three point estimators.

COMPARISONS BETWEEN OLS AND MULTILEVEL
ESTIMATES OF STANDARD ERROR

Table 5 presents the empirical standard error (the standard deviation of
parameter estimates over the replications in a given condition) of the medi-
ated effect and the relative bias in standard error estimates calculated using
first-order Taylor series, second-order Taylor series, and unbiased estimators
based on both OLS and multilevel analyses.

This table shows that the empirical standard errors associated with the
OLS analyses were slightly larger than those associated with the multilevel
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TABLE 4: Mean Squared Error (MSE) of OLS and Multilevel c – c¢ and ab Esti-
mates of the Mediated Effect by Number of Groups, Group Size, and
True Value of the Mediated Effect (true med)

Number of Groups
Group True
Size Med Estimate 10 20 30 50 100 200

5 to 10 .01 OLS .003289 .001066 .000601 .000327 .000143 .000062
c – c ′ .003180 .001008 .000550 .000304 .000137 .000058
ab .003150 .000995 .000545 .000300 .000136 .000058

.09 OLS .014200 .006045 .003933 .002192 .001013 .000557
c – c ′ .013640 .005843 .003850 .002148 .000986 .000542
ab .013549 .005835 .003846 .002139 .000976 .000537

.25 OLS .036614 .016001 .010293 .005988 .002903 .001454
c – c ′ .036643 .015340 .010153 .005767 .002832 .001397
ab .036298 .015354 .010063 .005774 .002812 .001394

20 to 30 .01 OLS .001283 .000471 .000278 .000141 .000073 .000034
c – c ′ .001140 .000430 .000254 .000134 .000067 .000033
ab .001139 .000430 .000253 .000133 .000068 .000033

.09 OLS .007240 .003215 .002107 .001307 .000601 .000306
c – c ′ .007007 .003049 .002018 .001250 .000579 .000213
ab .007001 .003040 .002009 .001248 .000577 .000292

.25 OLS .019204 .009471 .006027 .003489 .001704 .000848
c – c ′ .018223 .009043 .005794 .003355 .001629 .000806
ab .018232 .009039 .005771 .003352 .001620 .000804

NOTE: OLS = ordinary least squares.



analyses for all combinations of mediated effect value, number of groups,
and group size. This indicates that the OLS analyses were, as expected, less
efficient than the multilevel analyses. The table also shows that the OLS-
based estimates of the standard error of the mediated effect were substan-
tially downwardly biased. This bias was most apparent for the larger group
size (20-30 observations), in which estimates were typically 35% to 40%
smaller than the empirical standard error value. Downward biases of 18% to
20% were common in the smaller group size (5-10 observations) condition.

Overall, multilevel-based estimates of the standard error showed consid-
erably less bias than the OLS-based estimates (although a notable exception
occurred in the condition with small mediated-effect value, small number of
groups, and small group size). The mean contrast between the OLS and mul-
tilevel estimates of the standard error was significant,F(1, 87125) >
99999.99,p< .0001,η2 = .35. The effect of group size was also significant for
this contrast,F(1, 87125) = 37898.56,p < .0001,η2 = .30, indicating that the
OLS underestimation of the standard error was more substantial when group
size was large.

COMPARISONS AMONG MULTILEVEL ESTIMATES OF
THE STANDARD ERROR OF THE MEDIATED EFFECT

Separate ANOVAs were performed on relative bias values for each of the
three multilevel standard error estimators. No effects of group size, number
of groups, true value of the mediated effect, or level of intraclass correlation
were found for the first-order Taylor series estimator (allη2s < .01). A signifi-
cant main effect of true value of the mediated effect,F(2, 89820) = 1485.00,
p < .0001,η2 = .03, and a significant interaction between number of groups
and the true value of the mediated effect,F(10, 89820) = 142.14,p < .0001,
η2 = .02, revealed that the second-order Taylor series estimator tended to
overestimate the empirical standard error when the true value of the mediated
effect was small, especially when the number of groups in the analysis was
also small. Finally, examination of a weak three-way interaction among
number of groups, group size, and the true value of the mediated effect,F(10,
87667) = 42.97,p < .0001,η2 = .005, suggested that the unbiased estimator
tended to underestimate the empirical standard error when the number of
groups was small, except when small numbers of groups (10-30), small
group sizes (5-10), and small values of the true mediated effect (.01) com-
bined, resulting in overestimation.

These patterns of overestimation and underestimation have clear implica-
tions in the selection of the optimal estimator for use with mediated effects of
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TABLE 5: Empirical Standard Errors (SE) and Relative Bias in Estimated Standard Errors of the Mediated Effect For OLS and Multi-
level Analyses by Number of Groups, Group Size, and True Value of the Mediated Effect (true med)

OLS Number of Groups Multilevel Number of Groups
Group True
Size Med 10 20 30 50 100 200 10 20 30 50 100 200

5 to 10 .01 Empirical SE .0573 .0326 .0244 .0180 .0119 .0079 .0561 .0315 .0233 .0173 .0116 .0076
First-order

estimate (%) –7.14 –10.93 –14.38 –17.78 –20.46 –19.53 7.52 4.25 3.50 0.32 –1.30 2.03
Second-order

estimate (%) 10.32 2.27 –3.52 –10.51 –16.42 –17.12 32.05 22.96 18.73 10.51 4.15 5.01
Unbiased

estimate (%) –7.54 –13.24 –17.56 –21.30 –24.19 –21.46 7.92 1.30 –0.98 –4.94 –6.51 –0.95
.09 Empirical SE .1188 .0777 .0627 .0467 .0318 .0235 .1161 .0763 .0620 .0462 .0312 .0232

First-order
estimate (%) –19.48 –20.56 –21.24 –20.55 –18.03 –22.28 –0.70 –1.19 –1.98 –0.92 3.69 –1.60

Second-order
estimate (%) –14.79 –18.11 –19.62 –19.54 –17.51 –22.04 5.62 2.04 0.13 0.39 4.37 –1.27

Unbiased
estimate (%) –22.89 –22.92 –22.90 –21.56 –18.55 –22.53 –5.46 –4.56 –4.15 –2.25 3.01 –1.92

.25 Empirical SE .1911 .1265 .1015 .0771 .0538 .0381 .1901 .1239 .1003 .0758 .0530 .0373
First-order

estimate (%) –21.54 –21.10 –20.67 –19.76 –19.86 –20.25 –3.06 –0.58 –0.69 0.67 1.29 1.37
Second-order

estimate (%) –19.79 –20.21 –20.07 –19.40 –19.68 –20.16 –0.81 –0.59 0.09 1.15 1.53 1.49
Unbiased

estimate (%) –23.35 –22.01 –21.27 –20.13 –20.05 –20.34 –5.39 –1.78 –1.47 0.19 1.05 1.25
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20 to 30 .01 Empirical SE .0357 .0216 .0166 .0119 .0086 .0059 .0337 .0207 .0159 .0115 .0082 .0057
First-order

estimate (%) –34.41 –36.82 –39.15 –38.59 –42.03 –41.70 –2.15 –1.10 –0.72 2.96 0.35 0.21
Second-order

estimate (%) –28.47 –33.01 –36.27 –36.66 –41.09 –41.22 11.07 7.09 5.22 6.75 2.21 1.14
Unbiased

estimate (%) –36.19 –39.31 –41.30 –40.40 –42.96 –42.19 –6.27 –6.36 –5.95 –1.04 –1.55 –0.73
.09 Empirical SE .0851 .0567 .0459 .0361 .0245 .0175 .0836 .0552 .0448 .0353 .0240 .0171

First-order
estimate (%) –41.70 –41.75 –42.14 –43.74 –41.87 –42.68 –3.62 0.75 0.34 –2.08 1.49 0.36

Second-order
estimate (%) –40.65 –41.21 –41.78 –43.53 –41.76 –42.63 –1.64 1.79 1.03 –1.67 1.70 0.46

Unbiased
estimate (%) –42.78 –42.29 –42.51 –43.95 –41.98 –42.74 –5.66 –.30 –.36 –2.49 –1.28 –0.26

.25 Empirical SE .1383 .0974 .0776 .0590 .0412 .0291 .1348 .0951 .0759 .0579 .0402 .0283
First-order

estimate (%) –42.49 –44.42 –43.63 –43.15 –42.72 –42.85 –1.32 –3.49 –2.04 –0.91 0.79 0.69
Second-order

estimate (%) –42.10 .44.23 –43.50 –43.08 –42.68 –42.83 –0.59 –3.13 –1.79 –0.76 0.87 0.73
Unbiased

estimate (%) –42.89 –44.61 –43.56 –43.23 –42.76 –42.87 –2.06 –3.85 –2.28 –1.06 0.72 0.66

NOTE: OLS = ordinary least squares.



different magnitudes. For the smallest mediated effect in this study (ab= .01),
the first-order Taylor series or the unbiased estimator would be preferred,
because the second-order Taylor series estimator tended to overestimate the
standard error, often substantially. With a slightly larger true mediated effect
(ab = .09), the first-order Taylor series estimator would be recommended
when the number of groups and group size were small, because the second-
order estimator still tended to overestimate, and the unbiased estimator
tended to underestimate the standard error in these conditions. However,
when both number of groups and group size were relatively large, the unbi-
ased estimator had a slight advantage over the first-order Taylor series. For
the largest mediated effect in this study (ab = .25), the second-order esti-
mate of the standard error would be preferred when the number of groups in
the analysis was small, because this estimate was somewhat less biased than
the other two under these conditions. However, when the number of groups
in the analysis was large (100 or more groups), the unbiased estimator was the
least biased of the three. It should be noted, however, that the differences
among the various estimators were quite small in these conditions.

In most cases, however, researchers who wish to use multilevel media-
tional analyses will not know in advance the size of the mediated effect they
wish to test. Although number of groups, and to some extent, group size, are
controllable design features, the true size of the mediated effect is a feature of
the data-generating process and is not directly under the researcher’s control.
Moreover, a particular intervention study may involve a number of mediated
effects of different sizes. Therefore, it may not be possible to base decisions
about the best standard error estimator on the effect size specific information
in Table 5. Therefore, Table 6 presents the relative bias in the multilevel-
based first-order, second-order, and unbiased estimators of the standard error
collapsed across the various values of the mediated effect. This table may be
more useful in situations in which effect sizes are unknown or variable. Table 6
shows that the second-order estimator tended to overestimate the standard
error, and this bias was quite substantial for conditions with small numbers of
groups and small group sizes. For conditions with 50 or fewer groups, the
first-order estimator had the least bias; for conditions with 100 groups or
more, the unbiased estimator had the least bias.

ATLAS DATA

To illustrate the extent of the differences between single level and multi-
level mediation analyses in an actual evaluation study, these methods were

436 EVALUATION REVIEW / AUGUST 1999



applied to data from the evaluation trial of the ATLAS program. The ATLAS
program is a team-based educational intervention program designed to ulti-
mately decrease steroid use among high school football players. Thirty-one
teams from different high schools were randomly assigned to program or
control conditions. Details of the prevention program can be found in Gold-
berg et al. (1996). The program was designed to achieve its effects through
changing a number of mediators believed to be related to the outcome mea-
sure. These targeted mediators included knowledge constructs, peer and
non-peer influence measures, attitudes, and individual player characteristics.
Subjects were measured prior to (pretest) and immediately following the
7-week intervention period (posttest).

Although the ultimate object of the ATLAS program was the reduction of
steroid use, more immediate aims included lessening intentions to use ster-
oids, lowering risk factors, increasing healthy behaviors and attitudes, and
presenting alternatives to steroid use, including improved sports nutrition
and strength training self-efficacy (Goldberg et al. 1996). The analyses
reported here concentrate on the strength training self-efficacy outcome vari-
able. This measure was constructed as the sum of six items (e.g., I know how
to train with weights to get as strong and as quick as possible), each scored
from 1 to 5, with lower values representing lower levels of this construct.
Cronbach’sα for this measure was .86 at pretest (MacKinnon, Goldberg,
Lapin, et al. 1999).

The mediator variables included in these analyses were selected because
preliminary analyses had shown them to be simultaneously significant (p <
.05) or marginally significant (p< .10) mediators of the relationship between
the intervention program and strength training self-efficacy in a single level
mediational analysis of the ATLAS data (MacKinnon, Goldberg, Clarke, et al.
1999). These nine mediators were,
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TABLE 6: Relative Bias in Multilevel Estimated Standard Errors of the Mediated
Effect by Number of Groups and Group Size (%)

Number of Groups

Group Size SE Estimate 10 20 30 50 100 200

5 to 10 First order 1.25 0.83 0.28 0.02 1.23 0.60
Second order 12.29 8.53 6.32 4.01 3.35 1.74
Unbiased –1.86 –1.89 –2.26 –2.27 –0.80 –0.54

20 to 30 First order –2.37 –1.28 –0.81 –0.01 0.88 0.42
Second order 2.95 1.92 1.49 1.44 1.59 0.78
Unbiased –4.60 –3.46 –2.85 –1.53 0.15 0.06



1. knowledge of steroid effects (18 items, pretestα = .86),
2. perceived coach tolerance of steroid use (3 items, pretestα = .59),
3. peers as an information source (3 items, pretestα = .85),
4. team as an information source (3 items, pretestα = .75),
5. ability to turn down offers of drugs (4 items, pretestα = .88),
6. perceived severity of steroid effects (3 items, pretestα = .82),
7. reasons against using steroids (14 items, pretestα= .84),
8. perception of athletic competence (4 items, pretestα = .86), and
9. self-esteem (4 items, pretestα = .87).

Details of these measures are reported in Goldberg et al. (1996), MacKinnon,
Goldberg, Clarke, et al. (1999), and MacKinnon, Goldberg, Lapin, et al.
(1999).

Analyses were conducted estimating each of the three mediation equa-
tions in both the single level (OLS) and multilevel frameworks. Pretest meas-
ures of the mediators and the outcome variable were used as covariates in
each of these three equations. The use of a common set of covariates across
the three equations is necessary to preserve thec–c′ = abequivalence in sin-
gle level models. Using different sets of covariates in the various equations
would confound the nonequivalence due to multilevel estimation techniques
with that due to differences in covariate sets. Therefore, a common set of
covariates, pretest level of the outcome variable and pretest measures of all
mediators included in a model, were used in estimating each of the three
meditation equations.

Two kinds of mediator models are reported here. First, each mediated rela-
tionship was examined in a separate analysis. These single mediator models
were estimated for each of the nine mediators individually, using both OLS
and multilevel estimation methods. Second, all nine mediators were com-
bined into a multiple mediator model, which examined the entire set of medi-
ated effects simultaneously, again using both OLS and multilevel estimation
methods. In all models, standard error approximations were calculated using
the first-order Taylor series expression.

SINGLE MEDIATOR MODELS

Table 7 presents the point estimates and standard errors of the mediated
effect for both OLS and multilevel analyses. The first four columns of the
table pertain to the single mediator models. For each of these nine models, the
standard errors associated with the multilevel estimates of the mediated
effect were larger than those associated with the OLS estimates. The multi-
level standard errors were, on average, 33% larger, and the largest increase
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TABLE 7: OLS and Multilevel Estimates and Standard Errors of ATLAS Mediated Effects in Single and Multiple Mediator Models

Single Mediator Models Multiple Mediator Model

OLS Multilevel OLS Multilevel

c – c¢ = ab c – c¢ ab % change ab ab % change
Mediator Estimate Estimate Estimate in SE Estimate Estimate in SE

Knowledge of steroid effects .1576*** (.0227) .1499*** (.0253) .1479***(.0253) 11.45 .0570***(.0160) .0553***(.0161) 0.63
Perceived coach

tolerance of steroid use .1256*** (.0237) .1218** (.0376) .1182** (.0376) 58.65 .0318** (.0103) .0301* (.0129) 25.24
Perceived severity of

steroid effects .1336*** (.0212) .1256*** (.0282) .1248***(.0282) 33.02 .0472***(.0128) .0482***(.0146) 14.06
Peers as an

information source .2305*** (.0276) .2289*** (.0336) .2272***(.0336) 21.74 .1289***(.0209) .1351***(.0239) 14.35
Team as an

information source .2414*** (.0296) .2429*** (.0529) .2407***(.0529) 78.72 .0964***(.0181) .0995***(.0277) 53.04
Perceived athletic

competence .1097*** (.0237) .0967** (.0313) .0976** (.0313) 32.07 .0340** (.0107) .0336** (.0124) 15.89
Self-esteem .0984*** (.0223) .0982*** (.0286) .0935** (.0286) 28.25 .0183* (.0080) .0169 (.0087) 8.75
Ability to turn down

offers of drugs .0836*** (.0200) .0853*** (.0248) .0826***(.0248) 24.00 .0155* (.0072) .0149 (.0080) 11.11
Reasons against

using steroids .0447*** (.0123) .0416** (.0137) .0417** (.0137) 11.38 .0013 (.0059) .0009 (.0057) –3.39

NOTE: OLS = ordinary least squares; ATLAS = Adolescents Training and Learning to Avoid Steroids. Standard errors are in parentheses.
*p < .05. **p < .01. ***p < .001.



was 79% for the mediated effect involving team as an information source.
Given the magnitude of the effects in these single mediator models, however,
the substantial increases in standard errors had only minor effects on the
significance tests of the mediated effects. For four of the mediator variables,
perceived coach tolerance of steroid use, perceived athletic competence,
self-esteem, and reasons against using steroids, mediated effects that were
significant at thep< .001 level in OLS analyses were significant only at the
p < .01 level in multilevel analyses. In all four of these cases, this minor
change in significance level could be attributed to both a larger standard error
and a smaller estimate of the mediated effect. For only one of these four
mediator variables, reasons against using steroids, would the mediated effect
still have had a lower significance level if the magnitude of the multilevel
estimate had been equal to that of the OLS estimate.

MULTIPLE MEDIATOR MODEL

The last three columns of Table 7 pertain to the multiple mediator model,
in which all nine mediated effects were examined simultaneously. Noc – c′
estimates are provided in this section of the table. In a multiple mediator
model,c–c′ estimates the total mediated effect for the model, rather than the
individual contribution of any particular mediator. Therefore, onlyab esti-
mates from both OLS and multilevel analyses are reported. Each of theab
estimates represents the unique effect of a given mediator over and above
those of the other eight mediators. Thus, these effects would be expected to
be considerably smaller than those in the single mediator models. Indeed, the
table shows that all nine effects were smaller in the multiple mediator model
than in the single mediator models. However, with the exception of the rea-
sons against using steroids mediator, all still significantly (p < .05) mediated
the relationship between program and outcome according to the OLS
analysis.

The standard errors associated with the mediated effects were again larger
in the multilevel analyses than in the OLS analyses (except for the nonsignifi-
cant reasons against using steroids mediated effect, which was very slightly
smaller), reflecting the downward bias in the OLS case shown in the simula-
tion study. These differences were not quite as dramatic as those in the single
mediator models: Multilevel standard errors were 0.63% to 53.04% larger
than OLS standard errors, with an average increase of 15.52% across the nine
mediators. However, the differences in significance levels and the inferences
that could be made on the basis of these were more apparent in the multiple
mediator model. The perceived coach tolerance of steroid use mediator was
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significant at the .01 level in the OLS analysis but achieved only a .05 level of
significance in the multilevel analysis. More tellingly, both the self-esteem
and the ability to turn down offers of drugs mediators, significant at the .05
level in the OLS analysis, were nonsignificant in the multilevel analysis.
Again, this change can be attributed both to larger multilevel standard errors
and smaller multilevel estimates of the mediated effects. However, the
change in the significance level of the perceived coach tolerance of steroid
use variable and the nonsignificance of the ability to turn down offers of
drugs variable would still hold even if the multilevel and OLS estimates were
of equal magnitude.

DISCUSSION

Now let us readdress the questions that the simulation study and ATLAS
example were designed to answer. The first of these concerned the discrep-
ancy between thec – c′ andabestimates of the mediated effect in multilevel
models. That two different estimates of the same quantity are not algebrai-
cally equivalent may initially be unsettling, but the results of the simulation
study show that on average, the discrepancy between the two is equal to zero.
Moreover, the absolute value of the discrepancy becomes vanishingly small
as the number of groups and group size increase, implying that for very large
samples, the two estimates would be equivalent. This small sample inequal-
ity, then, seems unlikely to be problematic.

The second question asks whether there is any reason to prefer one of
these two estimators over the other. Both thec – c′ andabmultilevel estima-
tors provide good estimates of the mediated effect. Both estimators are essen-
tially unbiased, as is the OLS estimator. Both multilevel estimators are
slightly more efficient than the OLS estimator, and theabmultilevel estimate
is slightly more efficient than thec – c′ estimate. However, both of these
effects account for only a small portion of the variance in MSE. Rather than
base a choice between the multilevelab andc – c′ estimators on the nearly
identical relative bias and efficiency results, a stronger argument might be
made based on the usefulness of the estimators in different types of media-
tional models. Although bothc – c′ andabmay be calculated as estimates of
the mediated effect in a single mediator model, the two quantities are inter-
preted quite differently in a multilevel mediator model. In such a model,c–c′
estimates the total mediated effect, whereasab estimates a single unique
mediated effect. So, althoughab estimates can be summed to provide an
estimate of the total mediated effect, there is no way in which to apportion
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thec–c′ estimate to determine the unique contributions of individual media-
tors. Therefore, theab estimator provides a greater amount of information
than thec–c′ estimator in models involving more than one mediator and gen-
erally may be preferred for that reason.

Comparisons between the standard error approximations calculated using
OLS and multilevel estimates show a substantial downward bias for the OLS
estimates and considerably less bias among the multilevel estimates. This
bias in OLS estimates in grouped data is widely known and, in fact, is a pri-
mary rationale for multilevel modeling. Among the multilevel estimators, the
second-order Taylor series approximation tends to overestimate the standard
error, and the unbiased estimator tends to underestimate the standard error in
many small sample conditions. Similar patterns are found in single level
mediation studies as well (MacKinnon, Warsi, and Dwyer 1995), which
would suggest that the biases are characteristic of small sample mediational
analyses in general, rather than the result of multilevel estimation. Given
these patterns, and in the absence of detailed information about the true value
of the mediated effect, it is recommended that the multilevel first-order Tay-
lor series approximation be used to estimate the standard error of the medi-
ated effect in analyses with 50 groups or less. The unbiased estimator may
provide a slight advantage in analyses with 100 groups or more.

The ATLAS example shows how different conclusions about the impor-
tance of particular mediators targeted by interventions can be reached, based
on OLS and multilevel mediational analyses. The standard errors generated
in the multilevel solution can be substantially larger than those from the OLS
solution, and statistical theory and simulation results show that this differ-
ence is due to downward bias in the OLS standard errors. When the mediated
effects are relatively small, as the unique effects of particular mediators may
be in a multiple mediator model, using unbiased multilevel standard errors
may result in making different inferences and in drawing different conclu-
sions than an OLS analysis. The increased accuracy that results from correct-
ing for the OLS bias in grouped data seems sufficient to justify the increased
complexity in model specification and estimation involved in multilevel
modeling.
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