GlueX timing and PID study for BCAL tracks

Sebastian Cole

Goals of analysis

- Continue to learn how to use the GlueX software
- Get a feel for the detector response and PID
- Looking for corrections that may help with calibration

Data

- Using ver09 REST files
- Looking only at a single run (3180)

Plots of β vs. p from TOF

Start counter for at least one track in event with no FOM cut

Start counter for at least one track in event with FOM cut of 0.0027

Mass of charged tracks from TOF

Mass from original momentum and measured β_{m} with no FOM cut

Mass from original momentum and measured β_{m} with FOM cut of 0.0027

Plots of β vs. p from BCAL only

Start counter for at least one track in event with no FOM cut

Start counter for at least one track in event with FOM cut

Mass of charged tracks from BCAL only

Mass from original momentum and measured β_{m} with no FOM cut

Mass from original momentum and measured β_{m} with FOM cut of 0.0027

TOF corrections

- Using correction method discussed in previous talk

Mass when β_{m} has corrected time $\left(\beta_{m}{ }_{m}\right)$

rePID

- Took PID of particle with best match of calculated β_{c} to corrected $\beta^{\prime}{ }_{m}$
- Fit $\beta_{c}-\beta_{m}^{\prime}$ to gaussian
- If $\beta_{c}-\beta^{\prime}{ }_{m}$ outside of 3σ, set particle to Unknown

Particle	$\beta_{c}-\beta_{m}^{\prime}$	σ
p	7.47×10^{-3}	1.19×10^{-2}
π^{+}	2.30×10^{-4}	6.84×10^{-3}
π	-1.66×10^{-4}	6.94×10^{-3}
K^{+}	-2.87×10^{-4}	6.82×10^{-3}
K^{-}	-1.25×10^{-3}	6.86×10^{-3}

Plots of β vs. p from TOF after rePID

$\psi_{\text {asu }}$

- Pink lines are β vs. p for fixed mass

Plots of $\mathrm{d} E / \mathrm{d} x$ from TOF after rePID

Plots of $\mathrm{d} E / \mathrm{d} x$ from TOF after rePID cont.

$\psi_{\text {asu }}$

Time offset BCAL only tracks

- Looked at negative tracks
- Assumed track is π
- Assumed path length and momentum are correct but Δt is wrong
- Take $\beta_{m}{ }_{m}=L /\left(\Delta t+t_{\text {offse }}\right)$
- Since $p=\beta^{\prime}{ }_{m} \gamma m$, then
$\left(\beta^{\prime}{ }_{\mathrm{m}}\right)^{2}=(p / m)^{2} /\left[1+(p / m)^{2}\right]$
and since $\beta c=L / \Delta t$, then
$c\left(\Delta t+t_{\text {offse }}\right)=\left[1+(p / m)^{2}\right]^{1 / 2} /(p / m)$

So that
$t_{\text {offset }}=L\left[1+(p / m)^{2}\right]^{1 / 2} /(p c / m)-\Delta t$

- pathlength from hypothesis
- $\Delta t=t 1-t 0$, from hypothesis

- Ignore corrections to bins 9,17 , and 36 or -100° to $-90^{\circ},-10^{\circ}$ to 0°, and 350° to 360°, respectively, due to multiple peaks

Plot of flight time vs. φ for BCAL only tracks

 corrected

千'asu

- Remember ignoring 3 bins

Mass of charged tracks

Mass from original momentum and measured β_{m}

Mass when β_{m} has corrected time $\left(\beta_{m}^{\prime}\right)$

rePID

- Took PID of particle with best match of calculated β_{c} to corrected $\beta_{m}{ }_{m}$
- Fit $\beta_{c}-\beta_{m}^{\prime}$ to gaussian
- If $\beta_{c}-\beta^{\prime}{ }_{m}$ outside of 3σ, set particle to Unknown

Particle
$\beta_{c}-\beta_{m}$
σ
2.13×10^{-2}
p $\quad 1.25 \times 10^{-3}$
-5.38×10^{-4}
2.64×10^{-2}
$\pi \quad-1.46 \times 10^{-3} \quad 2.71 \times 10^{-2}$
$K^{+} \quad-7.43 \times 10^{-3} \quad 1.43 \times 10^{-2}$
$K^{-} \quad-1.05 \times 10^{-2}$

Plots of β vs. p from TOF after rePID

$\psi_{\text {asu }}$

- Pink lines are β vs. p for fixed mass

Plots of $\mathrm{d} E / \mathrm{d} x$ from BCAL after rePID

Plots of $\mathrm{d} E \mathrm{~d} x$ from BCAL after rePID cont.

- Better timing resolution would help with the ID, as shown in TOF plots

Invariant mass $\pi^{+} \pi^{-}$

Center: $763.88+-1.68$ Width: $156.75+-6.41$

Missing mass $\gamma p \rightarrow \pi^{+} \pi^{-}$

Mass of ω

Center: $789.97+-2.03$
Sigma: $25.93+-2.14$

- π^{0} selected from missing mass of $\gamma p \longrightarrow p X$ where X has been identified as $\pi^{+} \pi^{-}\left(\pi^{0}\right)$

Mass of η

- π^{0} selected from missing mass of $\gamma p \longrightarrow p X$ where X has been identified as $\pi^{+} \pi^{-}\left(\pi^{0}\right)$

Invariant mass of $\gamma \gamma$ for $\gamma p \rightarrow \quad p \gamma \gamma$

Center: $133.65+$ - . 22
Sigma: $9.60+-.20$

- $\gamma \gamma$ coming from NeutralParticleHypothesis PID with best FOM and cuts on FCAL and BCAL Justin defined at the last meeting

Invariant mass of $\gamma \gamma$ for $\gamma p \rightarrow \quad p \gamma \gamma$

Center: $546.68+-13.11$
Sigma: $36.67+-15.50$

- $\gamma \gamma$ coming from NeutralParticleHypothesis PID with best FOM and cuts on FCAL and BCAL Justin defined at the last meeting

Title
*asu

