GlueX timing and PID study for BCAL tracks

Sebastian Cole

Goals of analysis

- Continue to learn how to use the GlueX software
- Get a feel for the detector response and PID
- Looking for corrections that may help with calibration

Data

- Using ver09 REST files
- Looking only at a single run (3180)

Plots of β vs. *p* from TOF

Mass of charged tracks from TOF

Plots of β vs. p from BCAL only

Mass of charged tracks from BCAL only

TOF corrections

• Using correction method discussed in previous talk

rePID

- Took PID of particle with best match of calculated β_c to corrected β'_m
- Fit $\beta_c \beta'_m$ to gaussian
- If $\beta_c \beta'_m$ outside of 3 σ , set particle to Unknown

Plots of β vs. p from TOF after rePID

• Pink lines are β vs. p for fixed mass

Plots of dE/dx from TOF after rePID

11

Plots of dE/dx from TOF after rePID cont.

Time offset BCAL only tracks

- Looked at negative tracks
- Assumed track is π
- Assumed path length and momentum are correct but Δt is wrong
- Take $\beta'_m = L/(\Delta t + t_{offset})$
- Since $p = \beta'_m \gamma m$, then $(\beta'_m)^2 = (p/m)^2 / [1 + (p/m)^2]$ and since $\beta c = L/\Delta t$, then $c(\Delta t + t_{offset}) = [1 + (p/m)^2]^{1/2} / (p/m)$ So that

 $t_{offset} = L[1+(p/m)^2]^{1/2} / (pc/m) - \Delta t$

- pathlength from hypothesis
- $\Delta t = t1 t0$, from hypothesis

Ignore corrections to bins 9, 17, and 36 or -100° to -90°, -10° to 0°, and 350° to 360°, respectively, due to multiple peaks

Plot of flight time vs. φ for BCAL only tracks corrected

• Remember ignoring 3 bins

14

Mass of charged tracks

rePID

- Took PID of particle with best match of calculated β_c to corrected β'_m
- Fit $\beta_c \beta'_m$ to gaussian
- If $\beta_c \beta'_m$ outside of 3 σ , set particle to Unknown

Plots of β vs. p from TOF after rePID

• Pink lines are β vs. p for fixed mass

Plots of dE/dx from BCAL after rePID

18

Plots of d*E*dx from BCAL after rePID cont.

• Better timing resolution would help with the ID, as shown in TOF plots

Invariant mass $\pi^+\pi^-$

Missing mass $\gamma p \rightarrow \pi^+ \pi^-$

Mass of ω

π⁰ selected from missing mass of γ p → p X where X has been identified as π⁺π⁻ (π⁰)

Mass of η

π⁰ selected from missing mass of γ p → p X where X has been identified as π⁺π⁻ (π⁰)

Invariant mass of
$$\gamma\gamma$$
 for $\gamma p \rightarrow p \gamma\gamma$

• γγ coming from NeutralParticleHypothesis PID with best FOM and cuts on FCAL and BCAL Justin defined at the last meeting

Invariant mass of
$$\gamma\gamma$$
 for $\gamma p \rightarrow p \gamma\gamma$

• γγ coming from NeutralParticleHypothesis PID with best FOM and cuts on FCAL and BCAL Justin defined at the last meeting

