GlueX pid study for tracks that have TOF

Sebastian Cole and Michael Dugger

Goals of this preliminary analysis

- Learn how to use the GlueX software
- Get a feel for the detector response and PID

Data

- Using ver07 REST files
- Looking only at a single run (3185)

Notes on objects used

- Used Get_BestFOM() from DChargedTrack to get DChargedTrackHypothesis
- From DChargedTrackHypothesis:
 - dFOM
 - PID
 - charge
 - lorentzMomentum
 - t0
 - t1
 - pathLength
 - dSCHitMatchParams
 - dTOFHitMatchParams
- Used DBeamPhoton to get beam energy and time
- Used dSCHitMatchParams to get the vert time for SC tracks
 dHitTime dFlightTime

β vs. p for all charged tracks

¥asu

β vs. *p* tracks with TOF

¥asu

β vs. p for tracks with TOF

β vs. *p* tracks with TOF

PID

• The following plots are for tracks with TOF and at least one SC in event

Plots of β vs. p from TOF after PID

Time offset (slide 1)

- Looked at tracks with momentum > 2 GeV
- Assumed track is π
- Assumed path length and momentum are correct but Δt is wrong
- Take $\beta'_m = L/(\Delta t + t_{offset})$ • Since $p = \beta'_m \gamma m$, then
- $(\beta'_{m})^{2} = (p/m)^{2}/[1+(p/m)^{2}]$ and since $\beta c = L/\Delta t$, then $c(\Delta t + t_{offset}) = [1+(p/m)^{2}]^{1/2}/(p/m)$ So that

$$t_{offset} = L[1+(p/m)^2]^{1/2} / (pc/m) - \Delta t$$

- pathlength from hypothesis
- $\Delta t = t1 t0$, from hypothesis

Time offset (slide 2)

- Found time offset
- $t_{offset} = -0.97$

Mass of charged tracks

rePID (temporary solution for now)

- Took PID of particle with best match of calculated β_c to corrected β'_m
- Fit $\beta_c \beta'_m$ to gaussian
- If $\beta_c \beta'_m$ outside of 4 σ , set particle to Unknown

Plots of β vs. p from TOF after rePID

• Pink lines are β vs. p for fixed mass

Plots of dEdx from TOF after rePID

Invariant mass of proton π^{-}

Invariant mass of $K^+ K^-$

Beam photon time

- $\Delta t =$ vertex time beam time
- Picked best timed photon one with smallest Δt
- Require track to have only one photon within 2 ns of best timed photon

Missing mass for $\pi^+ \pi^-$

• Reaction $\gamma p \to \pi^+ \pi^- X$

Result of FOM cut

• FOM cut kills 96.3% of tracks that have start counter in the event and TOF for the track

TOF event with no start counter in event

• The following slides contain tracks that have TOF but there was no start counter anywhere in the event

β vs. *p* for tracks with TOF

- FOM cut results have very nice looking β vs. p plot
- FOM cut results have no time offset needed

Mass plots

- Mass plot for FOM cut looks too good
- Looks like too many kaons for FOM-cut tracks
- Are the FOM-cut tracks good?

PID from hypothesis for positive tracks with FOM > 0.1

• Will go with the original PID for these tracks

Plots of dEdx from TOF with FOM > 0.1

• Each of the particles look contaminated

26

