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Abstract

Gene expression is the process by which a gene makes its effect on a cell or organism.
Linear differential equations have been explored as a model for gene expression. We
discuss the shortcomings of this model, and we propose a system of nonlinear differ-
ential equations to mathematically model gene expression in prokaryotes, specifically
bacteria. We investigate this biological system using explicit functions that describe
the processes of protein synthesis which includes transcription, translation, degrada-
tion, and feedback in hope of shedding light on their associated rates. We analyze the
transient and steady state solutions of the model and give a biological interpretation
of these results.

1 Introduction

Gene expression is the process by which a gene makes its effect on a cell, usually by directing
the synthesis of protein with specific functions. This process is comprised of two basic steps:
transcription and translation. Transcription is the process by which genetic information con-
tained in deoxyribonucleic acid (DNA) is copied into a messenger ribonucleic acid (mRNA).
Translation is the decoding of the genetic information in the mRNA into corresponding
proteins [?]. The process of gene expression is controlled by direct or indirect interaction
with other genes and their products. In both prokaryotes and eukaryotes, this operation is
important in supporting the cell’s survival.

Although extensive research has been conducted to find exact biological gene expression
pathways and rates, most work has been primarily focused on bacterial and simple eukaryotic
(yeast) transcription of mRNA. Secondly, a cell is constantly enduring intracellular changes in
order to respond to its changing environment, causing the gene expression process to become
extremely complicated as higher-ordered species are studied. This is the main reason why
protein synthesis has not been able to be researched as a whole system. Bacterial cells have
a simple but essential structure that consists of compartmentalized DNA surrounded by
plasma and a protective cell wall. Due to this simple structure, our mathematical modeling
efforts consider the prokaryotic bacterial cell where gene expression can take place anywhere
within the cell and time delay is not a factor (as it may be in eukaryotes).

Our goals include using specific functions to formulate a mathematical model to describe
gene expression of prokaryotic cells and analyze the behavior of the model by showing possible
equilibrium solutions and bifurcations. We hope to gain insight into the interrelation of
transcription and translation in prokaryotic cells. We also wish to provide some insight on
how to possibly model protein synthesis in higher ordered eukaryotic organisms.

1.1 Biological System

Our mathematical model closely resembles prokaryotic bacterial protein synthesis that con-
tains feedback from various protein products caused by the cell’s environmental sensory.
Proteins are synthesized in two main steps, transcription and translation. Transcription is
the construction of mRNA from DNA genetic instructions, while translation is the process
of decoding the mRNA to produce protein.
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Considering the bacterial domain, transcription begins when the double stranded DNA
is in contact with a protein called polymerase enzyme. The interaction between the DNA
and the polymerase enzyme is initiated and terminated by proteins known as transcription
factors. While in contact with the DNA, the polymerase moves along the strands of the
DNA, unwinds them, and then uses one of the two as a template to make a single stranded
mRNA. The mRNA is then transported to the ribosome to begin translation. The ribosome
is a complex molecule that has two subunits comprised of lengthy ribosomal RNA (rRNA)
and 30 to 50 proteins. Both subunits work together to decode the genetic information on
mRNA into a certain sequence of amino acid. The transfer RNA (tRNA) carry the necessary
animo acids to the ribosome, where these amino acids are combined into a polypeptide chain
of the prescribed sequence. The ribosome releases the polypeptide chain, which then folds
into itself and becomes a protein [?].

Figure 1: General Bacteria Protein Synthesis.[?]

1.2 Translating the Biological Process into Mathematical Model

In the most general case, transcription, translation, and degradation are controlled by the
number of mRNA and proteins present in the cell. For instance, mRNA needs to be present in
order for translation to occur, so the more mRNA there are, the more translation will occur.
Likewise, the more protein there are, the more protein will decay. These relationships could
be described mathematically as the rate of the change in concentrations of the respective
protein or mRNA set equal to some mathematical functions that represent the cause of
change for that rate.

d~r

dt
=g(~r, ~p, t)

d~p

dt
=h(~r, ~p, t)

This type of relationship is known as system of first order differential equations.
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2 Past Gene Expression Models

2.1 Linear Transcription Model

In 1999, Chen, He, and Church proposed a simplistic linear differential equation model for
gene expression that has a protein feedback loop to transcription [?]. They also regard the
degradation and translation rates of the mRNA and protein as constant. This model ignores
protein feedback to translation by assuming that this procedure is relatively stable. The
network is shown below in Figure ??.

Figure 2: A Linear Transcription Model.

Based on this model, Chen et al. proposed the following system of differential equations
to model the system.

d~r

dt
=f(~p)− V ~r

d~p

dt
=L~r − U~p (1)

Note that the variables are functions of time. Assuming the genome has n genes, we have
that ~r is an n-vector with ri representing the concentration of the ith mRNA, and ~p is an n-
vector with pi representing the concentration of the ith protein. f is a vector-valued function
that represents the transcription rate of mRNA as a function of proteins (such as polymerase
and transcription factors). L is a constant diagonal matrix that represents the translation
rate of mRNA into proteins. V and U are constant diagonal matrices where Vi,i and Ui,i

represent the relative degradation rates of the ith mRNA and the ith protein respectively.
Chen et al. argued that the function f can be represented as a constant matrix, thus

making system (??) a linear one. This suggested linear differential model has been a basis for
further mathematical exploration of gene expression. However, there are some discrepancies
between the behavior of the biological system and the behavior that this model predicts. For
example, the only equilibrium of system (??) is when when ~r = ~0 and ~p = ~0, thus predicting
exponential growth of the concentrations of mRNA and proteins, which does not agree with
the biological process. This unrealistic prediction may be due to the fact that there are
many interactions that are ignored, such as the feedback from proteins to the transcription
process.
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2.2 Limited Nonlinear System

In 2003, Kim and Tidor described a nonlinear gene expression model that was controlled at
the transcription level [?]. Moreover, they assumed a monotonic dependence on the mRNA
and protein concentration levels by the transcription and translation rates. This assumption
made solving for steady-states easier and they proved the existence of an asymptotically sta-
ble equilibrium solution. They further modified their model to take into account a saturation
effect of protein degradation. The equations they developed to model the system are

dri

dt
=fi(pi)− Vi(ri),

dpi

dt
=Li(ri)− Ui(pi), (2)

for i = 1, 2, · · · , n.
The variables ri and pi represent the concentrations of the ith mRNA and protein respec-

tively. fi(pi) is the transcription rate of the ith mRNA, Vi(ri) is the degradation rate of ith
mRNA, Li(ri) is the translation rate of the ith mRNA into the ith protein, and Ui(pi) is the
degradation rate of the ith protein. Also, Ui(pi) and Vi(ri) are assumed to be positive and
strictly monotonically increasing, while Li(ri) is strictly monotonically increasing and fi(pi)
is strictly monotonically decreasing.

These equations provide a starting point for future gene expression models, but they do
not provide explicit functions to characterize their assumptions.

3 Proposed Mathematical System

To construct our mathematical gene expression model, we established our groundwork from
the two previously discussed models. Furthermore, we construct a nonlinear model by in-
corporating multiple feedback loops throughout the protein synthesis process.

Because the bacterial cell structure consists merely of one compartment, transcription
and translation simultaneously occur within the same area, which implies that there are no
time delays to consider in our model. The cell is constantly enduring rapid change as it
prepares for replication into a new identical cell. Since cell replication occurs on a time scale
much larger than that of protein synthesis, we consider our model to represent the cell at
some time interval between formation and cytokinesis (cell division). During this time, we
consider the volume of the cell to be constant.

We regard tRNA and rRNA to be in excess in the cell so that the process of protein
synthesis is independent of the concentrations of these types of RNA. So we consider only
the effect of mRNA, as in previous models. While there are numerous types of mRNAs
and proteins, the biological literature suggests that each can be grouped into three different
categories according to the type of protein they produce. The categories are as follows:
Type 1 mRNA produce Type 1 proteins which initiate and perform the transcription of
all mRNA [?], Type 2 mRNA generates Type 2 proteins which help stabilize all mRNA
against degradation [?], and Type 3 mRNA manufacture Type 3 proteins which are not
directly involved in either step of protein synthesis but instead are sent out to the cell for
other purposes. We assume that each type of protein regulates the production of its own
protein type during the processes of both transcription and translation. This gene regulatory
network is shown in Figure ??.
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Figure 3: Proposed gene expression model where group mRNA I, mRNA II and mRNA III
produce type Protein I, Protein II, and Protein III, respectively.

We now have the transcription of Type i mRNA as a function of Type 1 proteins and
Type i proteins. Specifically, the transcription function is a strictly decreasing function of
Type i proteins and a strictly increasing function of Type 1 proteins. Thus the presence
of more Type 1 proteins will result in a further increase in this transcription while the
presence of more Type i proteins will result in a decrease in this transcription function. This
is simply because the transcription rate in cells is higher when more transcription factors
(Type 1 proteins) are present, but if there are a lot of Type i proteins present, the cell will
not need to produce many more of that type of mRNA. We assume that the dependence on
Type 1 proteins is linear and somewhat logistic on Type i proteins. The general behavior
of the transcription function resembles the function plotted in Figure ?? in two projections:
(a) p1 is fixed, and (b) pi is fixed, where pi is the concentration of Type i proteins.

Figure 4: (a) Left: The transcription function m strictly monotonically decreases as pi

increases. (b) Right: The transcription function increases linearly with respect to p1.

Likewise, we want translation to be an increasing function of Type i mRNA, but a
decreasing function of Type i proteins. Thus, the presence of more Type i proteins decreases
the production of Type i proteins, while the presence of more Type i mRNA increases the
production of Type i proteins. We again assume a linear dependence upon Type i mRNA.
The translation function should look like the function plotted below in Figure ?? for (a)
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fixed ri and (b) fixed pi, where ri represents the concentration of Type i mRNA, and pi is
again the concentration of Type i proteins.

Figure 5: (a) Left:The translation function strictly monotonically decreases as pi increases.
(b) Right: The translation function of mRNA increases linearly with respect to ri.

Similarly, we want the degradation of Type i mRNA to be an increasing function of
the number of Type i mRNA, but a decreasing function of Type 2 (stabilizing) proteins.
This is because the more mRNA there are, the faster they will degrade, but when more
stabilizing proteins are present, the mRNA will degrade more slowly. Again assuming that
the degradation rate has a linear dependence on Type i mRNA, the function should behave
as described below in Figure ??, where (a) p2 is fixed, and (b) ri is fixed.

Figure 6: (a) Left: The degradation function of mRNA strictly monotonically decreases as
p2 increases. (b) Right: The degradation function of mRNA increases linearly with respect
to pi.

From these assumptions we develop the following general equations to model the rates
of change of mRNA and protein concentrations:

dr1

dt
=

1

1 +
p2
1

a2
1

C1p1 − 1

1 + p2

b1

V1r1,
dp1

dt
=

1

1 + p1

d1

L1r1 − U1p1,

dr2

dt
=

1

1 + p2

a2

C2p1 − 1

1 + p2

b2

V2r2,
dp2

dt
=

1

1 + p2

d2

L2r2 − U2p2,

dr3

dt
=

1

1 + p3

a3

C3p1 − 1

1 + p2

b3

V3r3,
dp3

dt
=

1

1 + p3

d3

L3r3 − U3p3 (3)
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where ri and pi are the concentration of the Type i mRNA and protein in unit of nMolar.
Parameters Ci and Li are the relative transcription and translation rates in the absence of
feedback loops. Parameters Ui and Vi are the relative natural degradation rates of mRNA
and protein. Parameters ai, bi, and di are the effectiveness factors of the respective feedback
loops with the same unit as pi. The bigger the value of parameter ai, the smaller the effect
of the feedback into the transcription term. Likewise, bi and di controls the effectiveness of
the feedback into degradation of mRNA and translation of protein, respectively.

Note that the p1 and a1 are squared in the denominator of the transcription term in the
equation for dr1

dt
, thus giving the decrease suggested in Figure ??, where as p2, p3 are linear

in the denominators of the dr2

dt
and dr3

dt
terms thus giving a decrease suggested in Figure

??a. This is done to ensure that for very large values of pi, the transcription term tends
towards 0 instead of towards C1a1. We note that mathematically we will have discontinuities
in our system whenever p2 = −a2, p3 = −a3, p2 = −bi or pi = −di, i = 1, 2, 3. Although
these discontinuities, which are not biologically relevant, may appear as “false” equilibria in
solving these equations.

4 Analyzing the Stability of the System

4.1 Stability of the Origin

It can easily be shown that the origin of system (??) is an equilibrium point, since dpi

dt
= 0

and dri

dt
= 0 for i = 1, 2, 3 at (r1, p1, r2, p2, r3, p3) = (0, 0, 0, 0, 0, 0). The eigenvalues of the

Jacobian matrix of the system at the origin are found to be

λ1 = −U2, λ2 = −U3, λ3 = −1

2

(
U1 + V1 +

√
(U1 − V1)2 + 4C1L1

)
,

λ4 = −V2, λ5 = −V3, λ6 = −1

2

(
U1 + V1 −

√
(U1 − V1)2 + 4C1L1

)
. (4)

The eigenvalues λ1, · · · , λ5 are always negative since C1, V1, L1, and U1 are positive. When
α = L1C1−U1V1, the product of the production terms minus the product of the degradation
terms of Type 1 mRNA and protein, is negative, we have λ6 < 0, and thus the origin is a
stable node. This implies that the concentrations of all mRNA and proteins will approach
zero as time goes on when the product of the degradation rates of Type 1 products is smaller
than the product of the transcription and translation rates of Type 1 mRNA and protein.
The reason that the stability depends only on Type 1 products is because the transcription
of all mRNA depends on Type 1 proteins, which depends on Type 1 mRNA. Thus if these
products are decaying faster than they are being produced, all products will eventually die
out, making the origin a stable point. However, when α > 0, λ6 is positive, and thus the
origin becomes a saddle, meaning almost all initial concentration of mRNAs and proteins
near the origin will move away from it. Only in certain conditions will the system approach
the origin, such as when r1 = 0 and p1 = 0. In this case no mRNA will ever be produced,
and the system will eventually die out.

The origin has a λ = 0 bifurcation since λ6 is zero when α = 0. The specific type of
λ = 0 bifurcation will be discussed in a later section. On the other hand, the origin does
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not undergo a Hopf bifurcation since none of the eigenvalues can ever be purely imaginary.
From this, we conclude there are no limit cycles around the origin at any time [?].

4.2 Simplifying the System

Taking a closer look at the first four equations in (??), we see that they are independent of
the variables r3 and p3. These four equations can be solved independently of the other two.
Furthermore, any equilibrium of the the six-dimensional system will also be an equilibrium
of the four-dimensional one. Thus we need only to analyze the first four equations and then
use the results to infer the behavior of the full system.

dr1

dt
=

1

1 +
p2
1

a2
1

C1p1 − 1

1 + p2

b1

V1r1,
dp1

dt
=

1

1 + p1

d1

L1r1 − U1p1,

dr2

dt
=

1

1 + p2

a2

C2p1 − 1

1 + p2

b2

V2r2,
dp2

dt
=

1

1 + p2

d2

L2r2 − U2p2. (5)

Due to the numerous parameters in our system, it is helpful to obtain values for the
constants to somehow relieve the complexity of the system. Unfortunately, it is difficult to
measure the rates of production and decay of mRNA and proteins, so exact values are not
available for these rates. However, we can make estimates for the relative rates of mRNA and
protein production and degradation. It is also possible to reduce the number of parameters
via non-dimensionalization, but we opt to leave things in dimensional form to more easily
interpret rates.

To estimate the relative degradation rates of mRNA (Vi) and proteins (Ui) we consider
their typical half lives. Biological literature suggests that typical mRNAs have an average
half life of about 22 minutes, which we assume is the generic rate for all mRNAs in our system
[?]. From this we obtain Vi ≈ .03/min. Furthermore, protein half life is approximated in
the range of a few minutes to 50 minutes. We assume that the general Type 3 protein and
Type 3 has a half life of about 50 minutes [?]. Moreover, we assume that Type 1 proteins
degrade quickly so that the cell can easily regulate the number of mRNA that are produced
from a given number of Type 1 proteins. From this we approximate the degradation rates
for proteins to be U1 ≈ .15/min and U2 ≈ .015/min.

After gene expression begins, mRNA will appear in the cell after about 2.5 minutes with
its corresponding protein appearing in an additional .5 minutes [?]. This shows that in the
presence of the necessary number of Type 1 proteins, transcription will occur at a rate of
1 mRNA per 2.5 minutes. Since the typical number of proteins needed for transcription is
about 15, we estimate the transcription rate as Ci ≈ .03 mRNA/(protein·min). Also, since it
takes .5 minutes for the protein to be produced once the mRNA is formed, we can estimate
the translation rate as Li ≈ 2 protein/(mRNA·min)[?].

Here we list our approximate values for easy reference:

Ci ≈ .03mRNA/(protein min) Li ≈ 2protein/(mRNA min)

U1 ≈ .15min Ui ≈ .015min, for i = 2, 3

Vi ≈ .03min (6)
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These values are approximate, and are therefore used only to gain insight into the behavior
of the system under realistic conditions. It is necessary to also point out that it may be
possible to vary some of these rates through experimental methods.

4.3 Extreme Cases

The system in (??) has fourteen parameters, making if very difficult to analyze. It also has
several nonlinearities making it difficult to obtain reasonable expressions for the equilibrium
solutions. Therefore, we will look at several special cases of the system in which certain
parameters and terms can be ignored.

Case 1. bi À p2 and di À pi

In this case, we suppose that the stabilization of mRNA and the feedback from proteins
to translation are negligible in comparison to the other interactions of the system. System
(??) then simplifies to

dr1

dt
=

1

1 +
p2
1

a2
1

C1p1 − V1r1,
dp1

dt
= L1r1 − U1p1,

dr2

dt
=

1

1 + p2

a2

C2p1 − V2r2,
dp2

dt
= L2r2 − U2p2. (7)

This system has an equilibrium point at the origin, which as previously stated, is a
saddle (if α > 0) or stable node (if α < 0). To find other equilibrium points, we set the
equations (??) equal to zero and solve for their respective concentration variable which yields
an additional four equilibrium points. The four equilibrium points, given as (r1, p1, r2, p2),
are

(
X−eq

V2U1

C2a2U2L1

(a2U2 + X−eqL2), X−eq
V2

C2a2U2

(a2U2 + X−eqL2), X−eq, X−eq
L2

U2

)
,

(8)(
X+eq

V2U1

C2a2U2L1

(a2U2 + X+eqL2), X+eq
V2

C2a2U2

(a2U2 + X+eqL2), X+eq, X+eq
L2

U2

)
,

(9)(
Y−eq

V2U1

C2a2U2L1

(a2U2 + Y−eqL2), Y−eq
V2

C2a2U2

(a2U2 + Y−eqL2), Y−eq, Y−eq
L2

U2

)
,

(10)(
Y+eq

V2U1

C2a2U2L1

(a2U2 + Y+eqL2), Y+eq
V2

C2a2U2

(a2U2 + Y+eqL2), Y+eq, Y+eq
L2

U2

)
,

(11)
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where

X±eq = −
Bf ±

√
B2

f + 4AfCf

√
α

2Af

, (12)

Y±eq = −
Bf ±

√
B2

f − 4AfCf

√
α

2Af

, (13)

and

α = C1L1 − V1U1, Af = L2V2V1U1,

Bf = a2U2V2V1U1, Cf =
√

V1U1 U2C2a2a1. (14)

All four equilibria will be real-valued when α > 0 and B2
f −4AfCf

√
α > 0. Only the first

two equilibria, (??) and (??), will be real-valued if α > 0 but B2
f − 4AfCf

√
α < 0. None of

the equilibria will be real-valued when α < 0. In each of these situations, the origin is still
always an equilibrium solution.

In the case when B2
f − 4AfCf

√
α = 0, we see that Y+eq = Y−eq and thus the expressions

in (??) and (??) are identical. Based on the above information, we can conclude that a
saddlenode bifurcation occurs with these two equilibrium solutions for the set of parameter

values satisfying the expression
√

α =
B2

f

4Af Cf
.

In the case when α = 0, we see that X+eq = Y+eq, and thus the expressions in in (??) and
(??) are identical. We can thus conclude based on the above information that a saddlenode
bifurcations occur at this point for the set of parameter values satisfying α = 0.

Furthermore, when α = 0, we find that

X−eq = −B −B

2Af

= 0 Y−eq− = −B −B

2Af

= 0.

When we substitute X−eq = 0 into (??) and Y−eq = 0 into (??), we find that the two equilibria
are both equal to the origin. We have two equilibria being born from the equilibrium at the
origin, so the system undergoes a pitchfork bifurcation when α = 0. These bifurcations are
shown in Figure (??) as a bifurcation diagram for p2 as a function α.

In order for the system to have nontrivial equilibrium points, the condition α > 0 must
be met. To analyze whether these equilibrium points are possible biologically, we see that
points (??), (??), and (??) will always have a negative r2 variable for any parameter values,
and they are thus discarded. Equilibrium point (??) will always be located in the positive
hyper-octant for α > 0. Using our values in (??) and assuming a2 = 1 and a1 = 1, we
find the eigenvalues of the Jacobian matrix evaluated at the origin are complex and the real
parts are negative. This implies that a stable spiral exists at (??) when α > 0, which is
biologically relevant for the system.

To investigate the possibility of a Hopf bifurcation occurring in our system, we substitute
λ = iω into the characteristic polynomial of the Jacobian matrix of system (??) evaluated
at the equilibria and discover the following two conditions:

U2 + V2 = 0 and V1 + U1 = 0. (15)
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Figure 7: Equilibria and Bifurcation for Transcription.

To make sense biologically, the parameters must have positive values. Therefore, each sum
is positive, and it is very unlikely that a Hopf bifurcation will occur. A very large expression
of parameters gave a potential Hopf bifurcation, but we were not able to obtain useful
relationships among any of the parameters.

In this case, where only feedback into transcription is considered, we obtained one biolog-
ically relevant stable point when α > 0 because the origin is unstable. This is of interest to
biologists because they can possibly study the mRNA and protein concentrations and how
long it takes for them to reach saturation by adjusting the rate of transcription. This also
shows that feedback into transcription is a necessary component in gene expression.

A plot of the typical trajectories for this system is found below in Figure ??. The initial
conditions and parameter values for this particular graph are given by Table ?? below where
all values are in appropriate units.

I.C. Parameters
i ri pi C1 Li Vi Ui ai bi di

1 3 100 0.03 2 0.03 0.15 60 120 120
2 6 500 0.03 2 0.03 0.015 140 140 150
3 5 1 0.024 2 0.03 0.015 170 180 260

α = 0.055 β = −0.033 δ = 2.3E6

Table 1: Parameters and initial conditions used in numerical experiments.

Notice in the plot that the concentrations come very close to a steady state solution after
about five hours.

Case 2. ai, di À pi

This is the case when the feedback from proteins to both transcription and translation is
negligible. Thus, the only nonlinear effect is that of p2 preventing the degradation of mRNA.
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Figure 8: Numerical solutions for Case 1 with parameters and initial conditions from Table
??.

System (??) then simplifies to

dr1

dt
= C1p1 − 1

1 + p2

b1

V1r1,
dp1

dt
= L1r1 − U1p1,

dr2

dt
= C2p1 − 1

1 + p2

b2

V2r2,
dp2

dt
= L2r2 − U2p2. (16)

For α = C1L1 − U1V1, the fixed points of this system are (r1, p1, r2, p2) = (0, 0, 0, 0) and

(r1, p1, r2, p2) =

(
U1V2b2U2b1α

C2L2L1(−b2C1L1 + b1α)
,

V2b2U2b1α

C2L2(−b2C1L1 + b1α)
,−b2U2b1α

C2L2L1

,− b1α

C1L1

)
,

.
For α < 0, the origin is stable and the nontrivial equilibrium point possibly resides in the

positive hyper-octant. This can be seen in Figure ??, which is a bifurcation diagram of system
(??) in one dimension, p2. However, this point is unstable, which is not biologically relevant.
When α = 0, the origin is the only solution, and its stability cannot be determined by
linear analysis. For α > 0, again there are two solutions, but the stability swaps between the
origin and the second equilibrium point. Also, the non-trivial stable equilibrium has negative
components, which is irrelevant in terms of biology. Since the origin is unstable and no stable
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point exists in the positive hyper-octant, for realistic initial values, the concentrations will
grow without bound. This can be seen in Figure ??.

Figure 9: Behavior of the stability of equilibrium points near α = 0 in Case 2.

λ = 0 bifurcation occurs at the origin when α = 0. The dynamics of the equilibrium
points imply that the specific type of λ = 0 bifurcation is a transcritical bifurcation. Also,
the eigenvalues at each equilibrium point can never be purely imaginary; thus, there are no
Hopf bifurcation and limit cycle [?].

As mentioned previously, this case which only considers feedback into mRNA degrada-
tion has no biological meaning. However, this indicates that the neglected feedbacks into
transcription and translation are critical components of the system.

Case 3. ai À pi and bi À p2

Here we consider that the feedback from proteins to transcription and the stabilization
of mRNA is negligible. System (??) then simplifies to

dr1

dt
= C1p1 − V1r1,

dp1

dt
=

1

1 + p1

d1

L1r1 − U1p1,

dr2

dt
= C2p1 − V2r2,

dp2

dt
=

1

1 + p2

d2

L2r2 − U2p2. (17)

There are 3 possible equilibrium points, one of which is the origin. The other two, given as
(r1, p1, r2, p2), are

(
C1d1α1

U1V 2
1

,
d1α1

U1V1

,
C2d1α1

U1V1V2

,
−Bl +

√
B2

l + 4BlC2L2d1α

2U1U2V1V2

)
, (18)

(
C1d1α1

U1V 2
1

,
d1α1

U1V1

,
C2d1α1

U1V1V2

,
−Bl −

√
B2

l + 4BlC2L2d1α

2U1U2V1V2

)
, (19)

where

α = C1L1 − V1U1,

Bl = d2U2V2V1U1.
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Figure 10: Numerical solutions for Case 2 with parameters and initial conditions from Table
??.

For α > 0 there are always three equilibrium solutions, two stable non-trivial solutions and
an unstable origin. For α < 0, it seems like there are still three equilibrium solutions if
Bl > −4C2L2d1α. However, a careful examination shows that under these conditions for α
and β, the two non-trivial solutions are false equilibrium solutions. Thus the origin is the
only equilibrium point when α < 0, which turns out to be stable.

As seen from the bifurcation diagram, Figure ??, we see that there is a pitchfork bi-
furcation at the origin when α = 0. There is no Hopf bifurcation since the eigenvalues at
each equilibrium point can never be purely imaginary. Just like in Case 1, we have one
relevant stable equilibrium solution when α > 0. Thus when α > 0, any relevant initial con-
centrations will eventually settle into positive concentrations. Again, using the same set of
parameter values and initial condition found in Table ??, a plot of concentrations of mRNA
and protein over time is shown in Figure ??.

Case 4. di À pi

In this case we have that the feedback from proteins to translation is negligible. System
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Figure 11: Behavior of the stability of equilibrium points near α = 0 in Case 3.

(??) then simplifies to

dr1

dt
=

1

1 +
p2
1

a2
1

C1p1 − 1

1 + p2

b21

V1r1,
dp1

dt
= L1r1 − U1p1,

dr2

dt
=

1

1 + p2

a2

C2p1 − 1

1 + p2

b22

V2r2,
dp2

dt
= L2r2 − U2p2, (20)

and we observe that the change in the concentration of proteins has a linear dependence on
ri and pi.

By setting each of the equations in (??) to zero, we find that we again have a equilibrium
point at the origin as well as up to four other points elsewhere. We find that the system has
λ = 0 eigenvalues when α = 0 or when β = 0, where β is an expression of parameters that
will not be shown here because of its length and complexity. There is also a third condition
for bifurcation: α = L1C1a2

b1
. This corresponds to a removable discontinuity in the system of

equations and is not a true equilibrium of the system.
In numerical experimentation, we find four non-trivial equilibria only for very large b1

and b2. In this case our bifurcation diagram is analogous to that discussed in Section 4.3.1.
Otherwise, varying the parameter C1, which in effect varies α, and setting all other produc-
tion and degradation rates to the values in (??), we find that the system has at most two
equilibria other than the origin. The projections of this particular bifurcation curve as a
function of C1 are shown below in Figure ??.

When α = 0 we have exactly one other equilibrium point, with a double root of sorts
at the origin. For negative α ≈ 0, we have a stable equilibrium at the origin and an
unstable equilibrium very close to the origin. For positive α ≈ 0, the origin is an unstable
equilibrium and we have a stable equilibrium very close to the origin. From this we know
that a transcritical bifurcation occurs when α = 0.

When β = 0, we have exactly two equilibria with a double root at the non-zero solution. If
β < 0, we have only the origin as an equilibrium point, and for very small β > 0, we have two
equilibria other than the origin. We can see from this that a saddlenode bifurcation occurs
when β = 0. For the values in (??), this bifurcation point is in the positive hyper-octant.
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Figure 12: Numerical solutions for Case 3 with parameters and initial conditions from Table
??.

From Figure ?? we see that for parameters that satisfy the condition that α < 0 < β, we
have three equilibria: the origin and two in the positive hyper-octant. The origin is stable,
the point closer to the origin is unstable, and the other point is stable. This is a potentially
interesting case for experimentalists since, for realistic (positive) initial conditions, it is
possible for the system to approach one of two stable equilibria. By fixing parameters so
that α < 0 < β and by adjusting the initial conditions, this conclusion can be illustrated
numerically.

A plot of the typical trajectories for this system is found below in Figure ??. Notice that
the concentrations come to steady state after almost 500 hours. This is on a much larger
scale than other cases. This may indicate that the stabilizing proteins are necessary in order
to get realistic solutions.

4.4 The Six-Dimensional System

Biologically, the main points of interests in this system are the stable equilibrium points. If
we have an equilibrium of the six-dimensional system, its projection into the four dimensional
subspace described by r1, p1, r2, and p2 must be an equilibrium point of the four-dimensional
system in (??). Thus one can first find a four-dimensional equilibrium point, (r∗1, p

∗
1, r

∗
2, p

∗
2),
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Figure 13: Bifurcation diagram for system (??) in various projections with values from (??).

then solve the following system found by setting dr3

dt
= 0 and dp3

dt
= 0:

0 =
1

1 + p3

a3

C3p
∗
1 −

1

1 +
p∗2
b3

V3r3, 0 =
1

1 + p3

d3

L3r3 − U3p3. (21)

There are at most three solutions to these equations. Each solution must be entered
into the 6× 6 Jacobian matrix and the eigenvalues must be found in order to determine the
stability of the six-dimensional equilibrium point.

5 Conclusion

In Case 1, where stabilization of mRNA and protein feedback into translation is negligible,
supercritical pitchfork bifurcation occurs at the origin when α = 0. When α > 0, which
means the origin is a saddle, there exists one stable equilibrium that is biologically relevant.
This can be interpreted as a saturation effect occurring for the concentration of mRNA and
proteins at this point. If α < 0 then there is no nontrivial equilibrium, but the origin is
stable. These results can be tested by adjusting one or all of the production and degrada-
tion rates of Type 1 products, and thus adjusting α. The experiments could verify that if
α < 0, then the system should die out, and if α > 0, then the system should approach a
nontrivial equilibrium. These experiments may also be applied to Case 3, where feedback
from proteins to transcription and the stabilization of mRNA is negligible, because it has
similar supercritical pitchfork bifurcation when α = 0 and one stable equilibrium when α > 0.

In Case 2, where the feedback from proteins to transcription and translation is negligible
and when α < 0, the origin is stable and there is a equilibrium point in the positive hyper-
octant that is unstable. If α > 0, then the origin is a saddle with a stable point in the
negative hyper-octant. Because the only stable biologically relevant equilibrium is the origin,
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Figure 14: Numerical solutions for Case 4 with parameters and initial conditions from Table
??.

this case is not biologically relevant. This indicates that the feedback into transcription and
translation are critical elements of our model and cannot be neglected.

For Case 4, where feedback from proteins to translation is negligible, there is a saddlenode
bifurcation in the positive hyper-octant, and there is a transcritical bifurcation at the origin
when α = 0. This seems to be the qualitative behavior of system (??) as well. For parameter
values that put the system between these two bifurcation points, the origin and a nontrivial
biologically relevant point are stable equilibria. In this situation, by varying initial conditions,
experimentalists can possibly verify that each stable equilibrium exists, thus giving even more
credibility to our model.

The process of gene expression through the production of proteins is an important func-
tion in every organism and we have provided a rather accurate system of differential to
model this procedure which includes the cell’s sensory of its environment and mRNA and
protein interaction. Most importantly our model uses explicit functions to describe these re-
lationships which, at present, is hardly attempted by other researchers. Aside from bacteria,
our model may be considered to represent simple eukaryotic organisms, such as yeast, and
provide insight on future mathematical modelling of higher ordered eukaryotic species.

Our model does carry some fault because relationships within the cell are constantly
changing from environmental stimuli and in preparation for replication. At this time, our
model lacks the general consideration of overall cell health due to external factors like nu-
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Figure 15: Numerical solution of the six dimensional system with parameters and initial
conditions from Table ??.

trients and temperature. Our classification of mRNAs and proteins are slightly skewed with
each other since protein Type 3 are the biggest concentration within a cell. Our estimated
rates (??) seem to need some adjustment to fit a time scale relevant to the actual time of
cell division. Since our model looks at gene expression in a global view, there is presently no
exact data available to compare our model with in order to alter it to accommodate actual
real life cellular conditions.

Overall, our individual analysis of the possible extreme cases of the four dimensional
continuous differential equations gene expression provides insight, through stability and bi-
furcation analysis, that may be used to describe the intricate processes of gene expression.
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