Chapter 28
46.  (a) 2.52 s
     (b) 21.6 microC
     (c) 3.40 s
48.  721 kOhms
50.  (a) by integration, U_C = (1/2)C(EMF)² and 
         energy out from battery = C(EMF)²
     (b) by integration, heat from resistor = (1/2)C(EMF)²
52.  2.35 MOhms
F57.  proof

Chapter 31
50.  42 V + (20 V/s)t
58.  (a) 238.7 W  (b) 154.8 W  (c) 393.5 W
60.  (a) 18.7 J   (b) 5.10 J   (c) 13.6 J
F46. r=11.4 cm; N=35 turns

Chapter 33
4.   (a) 6 microseconds (b) 167 kHz   (c) 3 microseconds
10.  proof
12.  (a) 3.6 mH  (b) 1326 Hz  (c) 189 microseconds
16.  (a) Q/2     (b) (sqrt3/2)I
30.  (a) 0.283 A  (b) 2.26 A
32.  0.6 A for all frequencies
34.  (a) 5.22 mA  (b) zero    (c) 4.52 mA
36.  (a) 39.1 mA  (b) zero    (c) -33.9 mA
44.  (a) 16.6 Ohms  (b) 422 Ohms  (c) 521 mA
     (d) 33.2 Ohms  (e) 408 Ohms  (f) 539 mA
48.  (a) 796 Hz     (b) same      
     (c) decrease   (d) increase
50.  100 V  (you must carefully explain why)
52.  (a) taking energy    (b) supplying energy
54.  proof plus explanations for limiting cases
60.  (a) 76.4 mH  (b) yes; 17.8 Ohms; resistor would 
                      consume energy, not store it
G1.  proof
G2.  proof
G3.  proof
Chapter 34
Q2.  into the page
2.   (a) 4.71 mHZ  (b) 212 s
6.   4.74 m
14.  1.19 MW/m²
16.  Bmax = 3.42 microT; Emax = 1.03 kV/m
34.  4.55 x 10^-4
38.  19.0 W/m²
40.  (a) 15.9%  (b) 84.1%
F22. at 5 km, 0.268 V/m, 0.894 nT;
     at 100 km, 0.0134 V/m, 44.7 pT
F32. 2.90 nJ/m³
     18.1 V/m, 60.4 nT