Now compute the fraction of the initial mass which was "lost".

TNT
fraction lost =
$$\frac{\text{mass lost}}{\text{starting mass}}$$

= $\frac{1.78 \times 10^{-35} \text{ kg}}{(227 \text{ nucleons}) \cdot (\frac{1.67 \times 10^{-27} \text{ kg}}{\text{nucleon}})}$
= $\frac{1}{21.3 \times 10^9}$
Fission
fraction lost = $\frac{\text{mass lost}}{\text{starting mass}}$
= $\frac{3.08 \times 10^{-28} \text{ kg}}{(236 \text{ nucleons}) \cdot (\frac{1.67 \times 10^{-27} \text{ kg}}{\text{nucleon}})}$
= $\frac{1}{1281}$

The fraction $\frac{1}{1281}$ is larger than the fraction $\frac{1}{21.3 \times 10^9}$ by a factor of

$$\frac{21.3 \times 10^9}{1281} = 16.6 \times 10^6$$

or 16.6 million, so that the energies of nuclear explosions are given in ktons of TNT.

1 metric ton = 1000 kg, so 1 kton = 1 million kg