
CONSERVATION OF ENERGY

By considering a system of objects, with each object being treated as if it were a

particle, we arrived at WNC = ∆Esys, i.e. the work done by all nonconservative forces on

all the objects in our system gives us the change in system mechanical energy.

Now suppose we have a universe of true particles (true particles have no possibility of a

rotational energy or of a temperature) which interact only by gravity and electromagnetism.

Let the electromagnetic interaction between our true particles be well-modeled by a purely

spring-like interaction (i.e. Hooke’s Law). We now wish to consider a system consisting

of some subset of N of these true particles; the universe will then consist of our selected

N -particle subset plus all the other particles in the universe (i.e. those which are not in

our subset). What can we learn by applying WNC = ∆Esys to our N -particle system?

Since all interactions between the particles in our selected subset are conservative,

what could possibly be the source of any nonconservative work? The answer is that the

particles in our subset might still interact with particles outside of our subset. These

“external” interactions could still only be gravity and our spring-like electromagnetic

interaction; however, since these forces are now external we cannot define a potential

energy for them. Recall that our philosophical definition of potential energy is “the energy

stored in a system of particles because of the relative positions of the particles in the

system”; therefore, only internal forces can possibly be conservative. So, for our system

of N true particles, we can write WNC,ext = ∆Esys. where the double subscript “NC,ext”

is somewhat redundant, since, given our assumptions, only external forces could possibly

have been NC forces. This result says, in symbols, that the particle-particle works which

are between one particle within our subset and one particle external to our subset result

in a change in the mechanical energy of our subset, unless of course these works happen

to sum to zero; if these particle-particle works do sum to zero (or if they do not exist),

then the mechanical energy of our subset is constant. This argument is as close as we can

get to a “proof” of conservation of energy. Ultimately, Conservation of Energy must be

taken as an unproveable law of nature which agrees with all repeatable experiments and

observations. Let us accept our “proof” as being true.

We have now “proven” Conservation of Energy for a system of true particles; however,

this idea is not very useful for us, because we cannot see true particles in everyday life, and

even if we could see them, there are uncountable numbers of them. For practical purposes,

we still need to consider interactions between objects, objects which are composed of

particles. If we can treat those objects as if they were particles (no rotation and no

temperature) we already know that WNC = ∆Esys, but if energy truly is conserved

(as we have “proved”), we should be able to say more about the energies within our

system of objects. The interactions between our objects may be either conservative or

nonconservative, so now it becomes useful to subdivide all of the nonconservative works
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into NC works due to internal and external contributions, i.e. WNC = WNC,ext +WNC,int,

where WNC,int refers to all the works done on all the objects in our system by all the NC

forces which result from interactions between those objects which are within our system,

and WNC,ext refers to all the works done on all the particles in our system by all the forces

which result from interactions between a particle in our system and an particle outside of

our system. Also, remember that the mechanical energy of our system of objects includes

only the kinetic energies of our rigid objects (no rotation and no temperature) and the

potential energies which are due to the relative positions of the objects (not the relative

positions of the particles within our objects). With these reminders, our result so far is

WNC,ext +WNC,int = ∆Esys, (1)

To make sense of this expression, we need to remember that our system of objects is also a

system of true particles (i.e. all of the particles within all of our objects); and that we have

already “proven” a Conservation-of-Energy principle for a system of true particles. Since

WNC,ext = ∆Esys of true particles, where we have added the explicit detail in the subscripting

so as to keep the observable change in mechanical energy of our system of objects separate

from the total change in mechanical energy of the system of true particles that make up

all of our objects. By substituting into equation (1) and rearranging we therefore have

WNC,ext = ∆Esys of true particles = ∆Esys, observable −WNC,int. (2)

Writing the relationship in this way makes it clear that the term −WNC,int must represent

all of the change in mechanical energy of the system of true particles that is not already

included in the ∆Esys, observable. In other words, −WNC,int must represent the unobservable

change in mechanical energy for our system, which we choose to write as ∆Ehidden because

this change in mechanical energy is hidden away inside of our objects; therefore

WNC,ext = ∆Esys of true particles = ∆Esys,observable +∆Ehidden. (3)

This “hidden” or invisible change in mechanical energy is usually called the change in

the internal energy of the objects in our system, and denoted as ∆Uint. These internal

energies are just untrackable mechanical energies — we cannot possibly keep track of the

kinetic energies of every particle (i.e. atom), nor keep track of changes in the electric

potential energy of a system of N particles when N is on the order of 1024. However, we

can argue that this change in an object’s internal energy must necessarily be positive if the

object’s temperature rises, because a higher temperature must indicate that the object’s

true particles (atoms) are wiggling around with higher average kinetic energies (i.e. the

thermal energy inside the object must be larger). So we have finally acknowledged that our

objects are composed of particles (atoms) which are always in perpetual motion (changes

in the kinetic and potential energies of these true particles are now in ∆Ehidden); however,

we still have not accounted for the possibility that our objects might rotate, and therefore

possess some rotational kinetic energy. We save that topic for our study of rotations.
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