
WORK AND THE WORK-KINETIC ENERGY THEOREM

We now know the Laws of Nature within the system of Newtonian Mechanics, namely

the force laws, the Universal Law of Gravity and Newton’s Third Law, and the Second

Law of Motion, which connects the idea of forces with the mathematics of motion. All of

these Laws are for particles. Eventually, we will want to apply these Laws to systems of

particles. Before we do that, we would like to ask “What is the effect of the Second Law

acting on a particle as it moves along a path from some starting location to some ending

location?” To answer this question, we need to be able to “integrate the Second Law over

the path.”

To see what we mean by “integrate the Second Law,” let’s integrate the Second Law

over a path in time, i.e. from some starting time ti to some ending time tf , the times

which will mark the beginning and end of some experiment. We start with the Second

Law for a particle of mass m:

Σ ~Fonm = m~aof m, (1)

and we integrate both sides of the equation over the elapsed time of our experiment:

∫ tf

ti

Σ ~Fonmdt =

∫ tf

ti

m~aof mdt. (2)

On the left-hand side of the resulting equation, we have the cumulative effect of the net

force on m acting over time; note that the units of the left-hand side are newtons times

seconds (N·s), and remember that we expect that the net force (as well as the acceleration

on the right-hand side) will be varying with time t. We will simply give the quantity on the

left-hand side a name, the “net impulse on m”. The right-hand side is easy to interpret,

since velocity is the anti-time-derivative of the acceleration; therefore:

∫ tf

ti

Σ ~Fonmdt = m∆~vof m. (3)

and we call this result (which comes from “integrating the Second Law over time”) the

“Impulse-Momentum Theorem” (the right-hand side is called the “change in momentum”).

Having seen what it means to “integrate the Second Law over time,” we wish now to

integrate the Second Law over a path in space; this calculation will allow us to see the

cumulative effect of a net force on our particle of mass m acting over that path. First we

need to draw a random path in space (we will limit our path to two dimensions of space)
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and select a “path variable” or “path coordinate”.

si

sf

∆ r
→

∫ ds
→

∆ r
→

=

The sum of the vector steps is the displacement.

si

sf

∫ ds = d

The sum of the step lengths is the pathlength,
i.e. the distance traveled.

The most popular symbol for the path coordinate is s. Imagine a measuring tape (or

string) laid out along the path; si marks the position of our particle (on the path) at

the beginning of our experiment, and sf marks our particle’s position at the end of our

experiment. The distance d moved by our particle is simply d = sf − si. We divide our

distance along the path into an infinite number of infinitely small steps, each of length ds,

in other words d =
∫ sf

si
ds. If we include the direction information for each tiny step then

our notation for each of these infinitesimal vector steps becomes ~ds, and the sum of the

infinite number of infinitely small vector steps is the displacement ∆~r of our particle over

the course of our experiment, i.e ∆~r =
∫ sf

si
~ds.

These integrals over the path coordinate s (whether vector or scalar) are called ”path

integrals” or ”line integrals”. For a non-trivial path, finding a method by which to actually

analytically compute such an integral can be a notoriously difficult task; by the time you

get to the end of your third university-level calculus class, you should be well aware of the

difficulties inherent in path integrals, and of the solutions to those difficulties offered by

calculus. However, the physical meaning of integrals such as
∫ sf

si
ds or

∫ sf

si
~ds should be

relatively easy to grasp. It is those physical meanings that you will need to understand in

this physics class.

We wish to “integrate the Second Law over our path”. Let us begin by asking “what

will it mean to integrate the net force on our particle over the path?” Since the 2D path

that we have drawn is curving in places, the net force on our particle in those places must

have a component which is perpendicular to the path (in order to provide the “change-

direction” acceleration of the particle). We know beforehand that the cumulative effect

of these perpendicular net-force components, acting over the path, will be to keep the

particle moving along the path, and the cumulative result will be the particle’s change in

direction from the beginning of our experiment to the end; therefore, we do not actually
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wish to include these perpendicular components of the net force in our integration. So for

the integration over the path, we choose to begin with only the s-component of the Second

law (we could call this the Second Law for the tangential direction, i.e. for the direction

which is always tangent to the path):

ΣFs = mas (4)

If you will compare this starting equation to eq. (1), you will see that this time we have

omitted some subscripting. These omissions were just to remove clutter; this net force

component is still on our particle of mass m, and the acceleration component is still of

that particle, but hopefully these reminders-by-subscript are no longer necessary.

sf

ΣFs

ΣF⊥

si

⊥ ) and tangential  (s)

P

particle speed−up at point P.
components of the net force, assuming
Possible transverse (

sf

ΣF⊥

si

⊥ ) and tangential  (s)

ΣFs

P

components of the net force, assuming
Possible transverse (

particle slow−down at point P.

Now we integrate this Second Law, s-component, over the path, from the start of our

experiment at path location si to the end of our experiment at path location sf :

∫ sf

si

ΣFsds =

∫ sf

si

masds. (5)

This equation is the “integration of the Second Law over the path”, and what remains is

for us to make sense of the result. First of all, the equation is more popularly written in

terms of dot products, or scalar products, like so:

∫ sf

si

Σ ~F · ~ds =

∫ sf

si

m~a · ~ds, (6)

but the physical meaning of the equation is exactly the same whether written in the dot-

product form or the s-component form.

On the left-hand side of the resulting equation (either eq. (5) or eq. (6)), we have

the cumulative effect of the s component of the net force on m acting over our path; note

that the units of the left-hand side are newtons times meters (N·m), which are called
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joules (J), and remember that we expect that the s component of net force (as well as

the s-acceleration on the right-hand side) will be varying with path location s. For the

cumulative effect of net force acting over time we chose the name “net impulse”; in this

case, we elect to name the left-hand side of eq. (5) (or of eq. (6)) the “net work done on

the particle as it moved along the path from si to sf”. Thus, the “net work” (or the “work

done by the net force”) is, by definition, the result of a path integral (or line integral). We

still need to interpret the right-hand side of eq. (5) (or of eq. (6)); but, before we do that,

let us spend some time understanding this new definition, the definition of work.

Formally, our definition of the “work done by a force ~F acting on some particle as it

moves along a path from si to sf” is, in symbols:

WF,si→sf ≡

∫ sf

si

~F · ~ds. (7)

Note that we choose to make our definition for any particular force; the net work on our

particle will then be the sum of the works done on the particle by each and every force

acting on our particle (or we could first add the forces together and then find the work

done by the net force). So our definition of work is a path integral, and for a beginning

class, we choose to make these path integrals for work as simple as possible by considering

only physical situations for which the integral does not require complex mathematical

manipulations. Here are three such physical situations.

1. When the s-component of the force ~F is constant, regardless of how much the path

twists or turns. If we use the symbol F for the magnitude of the constant value of Fs,

then Fs = ±F ; the plus sign is appropriate when the constant Fs is in the positive

s direction (the direction of movement), and the negative sign is appropriate when

the constant Fs is opposed to the direction of movement. In other words, for this

simplification, the work done by the force ~F turns out to be simply plus or minus

force times distance. Here is the argument in symbols:

ConstantFs : WF ≡

∫ sf

si

Fsds = Fs

∫ sf

si

ds = ±Fd (8)

Example: A cart full of lab equipment is being moved to a new location in a physics

building. The path of the cart takes it 20 m East to the spacious lobby of the building

and then through a gentle left-hand turn in the lobby followed by 12 m North to the new

location of the lab. The gentle turn is a quarter circle of length 4 m, so the total length

of the roughly L-shaped path is 36 m. A lab assistant maintains a horizontal 9-N force on

the cart, in the direction of motion, for the entire length of the “experiment” on the path.

Find the work done by that 9-N force during the movement of the cart.

Set Up: We have knowledge of the path, and we have enough knowledge of the force for

which the work is requested, so our objective is simply to apply the definition of work,
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treating the moving cart like a particle. Since the s component of the force is constant,

and since it is in the direction of motion of our cart, we simply need to compute positive

force times distance.

Execute: W9N = +(9N)(36m) = 324N ·m = 324 J

Evaluate: We now know the work done by the 9 N force applied by the lab assistant. We

know nothing about the net work done on the cart. We do know that there must have been

leftwards (or sideways, or perpendicular, or transverse) forces acting on the cart during

its left turn, but the question asked us nothing about those forces, and anyway, those

transverse force components cannot possibly have contributed to any net work, since they

are transverse components and not parallel (or s) components.

A constant F s

sf

si

Fs

FsFs

, shown at three randomly

chosen locations along the path.

→

→

→

→
A constant F

sf

si

F

F

F

, shown at three randomly

chosen locations along the path.

2. When the force ~F is constant over the path (instead of the s component of ~F being

constant). For this case, we will only need to take the dot product of the constant

force and the displacement of our particle as it moved along the path from si to sf .

Here is the argument in symbols:

Constant ~F : WF ≡

∫ sf

si

~F · ~ds = ~F ·

∫ sf

si

~ds = ~F ·∆~r (9)

You will find nice examples of the “work done by a constant force” in the reading

from our text (Examples 6.1 and 6.2).

3. When the path is as simple as possible, i.e. one dimensional and in one direction,

and the s component of the force, though possibly varying along the path, has been

measured at each location. In such a case, the customary choice is to change the path

coordinate simply to x. We can then plot the x-component of the force of interest

versus x and the integral that we need will be the “area under the curve” of Fx versus

x from xi to xf . Here’s the argument in symbols:

Simple path, measured force : WF ≡

∫ sf

si

Fsds =

∫ xf

xi

Fx(x)dx (10)
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Example: A string of a homemade crossbow has been measured to exert a force of 200 N

on the bolt (the bolt is the “arrow” for a crossbow) when the bow has been drawn

back by 10 cm. The force on the bolt (B) by the string (S) has been measured to

decrease linearly to 0.0 N as the bow is relaxed. The measurements have been reported as

FS onB,x = −(2000N/m)x for x = 0 to − 10 cm (the x-component of the force is in the

positive x direction when the location of the notch in the bolt is on the negative side of

x = 0). Find the work done on the bolt by the string if the drawn bow pushes the bolt

from x = −10 cm to x = 0.

Set Up: We have a case of a one-dimensional and one-directional path with the force

along the path measured at each location. So we will need to compute the area under the

reported force-versus-position curve.

Execute:

WFS onB
=

∫ xf

xi

Fx(x)dx =

∫ 0

−0.1m

(−2000N/m)xdx = 0− ((−1000N/m)(0.01m2) = 10 J

Evaluate: We have calculated the work done on the bolt by the string (or by the force on

the bolt by the string) over the path from −10 cm to zero. We haven’t been given whether

the bolt was shot horizontally, vertically, or perhaps at some angle, so once again we know

nothing about the net work done on the bolt. If the situation were arranged so that the

force on the bolt by the string were the only significant force on the bolt during the travel

along the path, only then would the calculated 10 J be the net work done on the bolt.

Now that we have some understanding of the physical meaning of the definition of

work, let us return to the problem of interpreting the right-hand side of eq. (5) or (6).

Begin by simply restating eq. (5)

∫ sf

si

ΣFsds =

∫ sf

si

masds. (5)

Since distance equals speed multiplied by elapsed time, the infinitesimal step length ds

is just the speed v (at that particular location along the path) times the infinitesimal

elapsed time dt during which the step will occur. So let’s make that replacement, which

will convert the integral on the right-hand side from a path integral to a time integral:

∫ sf

si

ΣFsds =

∫ tf

ti

masv dt. (11)

Next, we recognize that as is the speed-up or slow-down component of acceleration (i.e. the

parallel or tangential component of acceleration), and so the product asdt must produce

the amount of speed change dv which will occur during the infinitesimal time dt. So, let’s
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make that replacement, which will convert our integral from a time integral to a speed

integral, like so: ∫ sf

si

ΣFsds =

∫ vf

vi

mv dv. (12)

Success! Our two changes of variable have converted our integral on the right-hand side

to something that is easy to interpret, namely:

∫ sf

si

ΣFsds =
1

2
m(v2f − v2i ). (13)

This is the final result for our “integration of the Second Law over a path in space”. We

name the right-hand side the “change in kinetic energy (K)” for our particle of mass m,

and we call our resulting relationship the “Work-Kinetic Energy Theorem” or simply the

“Work-Energy Theorem”, i.e.

ΣWonm,si→sf
= ∆Kof m (14)

It is worthwhile to state this result in words: the net work on a particle of mass m moving

on a path from si to sf is always equal to the change in kinetic energy of that particle.

This important result is the foundation of the energy perspective on dynamics (dynamics

is the explanation of motions), and the starting point for what is perhaps the crowning

achievement of Newtonian dynamics, the principle of the Conservation of Energy.

Your reading on the topic of Work and Kinetic Energy now continues with Section

6.1 and Section 6.3 (page 183) from Young and Freedman.
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