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Data Fits 

Introduction 
 Most experiments involve several variables that are interdependent, 
such as force (F) and displacement (X) for a spring. A range of F will 
produce a range of X, with proportionality constant “k”, as described by 
Hooke’s law F(X) = -kX. Each measurement of the variables (F,X) has its 
own mean value and errors as described earlier in the “DataAna” handout. 
Now we want to combine these functional data to determine a mean value 
and error for the parameter “k”. Other situations may be more complex. 
Thus we have, in general, some function f(v1,v2,v3,...c1,c2,c3,...) that 
relates multiple variables (vi) and constants (ci).  
 

The experimental goal is to assess whether the assumed function is a 
good fit to the data, and, if so,  determine the best value and 

uncertainty of the constants. 
 
We begin this discussion using a simple linear function. Later, we briefly 
elaborate to linearized plots and and non-linear fits. 
 

Linear Regression 
 Consider an experiment in which students measure force vs. stretch 
for a vertical spring. Force is applied by hanging weights, calibrated to 
±1gm. Stretch is measured by sighting a ruler to an accuracy of ± 5mm. 
They obtain data as shown in Fig. 1. By convention we will refer to the 
horizontal axis as “X” and the vertical axis as “Y”. Also by convention, we 
plot the independent variable on X and the dependent variable on Y. The 
linear regression routine assumes that the X-values are error free. In practice 
this means that 
  
  the variable with the larger (percentage) errors goes on the Y-axis.  
 
In the present experiment, we see that the data for stretch show the larger % 
error, so we put stretch on the Y-axis.  
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Fig. 1 Linear fit to spring data. 

 
 The students recall that a simple spring should follow a linear 
behavior given by Hooke’s Law  
 
  F(X)=kX Eq. 1 
 
where F is the applied force (opposite the force by the spring on the object), 
X is the displacement from the equilibrium position, and “k” is the spring 
constant. They further realize that F = Mg, where M is the applied weight. 
So their model for the experiment is 
 

Fit Range



PHY132 ( P. Bennett) -3- 02/14/00 

  M(S) = (k/g) (S-S0) Eq. 2 
 
Notice the structure of Eq. 2: We have two variables (M, S) which take a 
range of values, and two parameters (k, S0) which are constants for this 
experiment. The aim is to find the values of parameters such that the 
function is a “best fit” to the data. That is: find the function (straight line in 
this case) that passes closest to all the data points. This is done by 
minimizing the root-mean-square of deviations (Ycalc-Ydata).1,2 This “linear 
regression” operation is available in all analysis programs as a canned 
macro. The fitting function is written in generic form as  
 
  y(x) = mx + b Eq. 3 
 
This is a linear function with variables (x,y) and constants (m,b). The 
program spits out the best fit values (and errors!) as 
 
  m = m0 ± ∆m = 0.204 ± 0.005 cm/gm  
  b = b0 ± ∆b = -1.8 ± 0.3 cm Eq. 4ab 
 
Here, “m” is the slope and “b” the y-intercept of a straight line. Notice that 
the students properly exclude the data below 20 gm from the fit, since they 
recognize that “something else is happening” there.  
 Before interpreting these results, we first ask  
 
  Is this model a good fit to the data? 
 
This is a subtle but very important question. The model function is a good 
fit to data if no systematic errors are apparent.  Systematic errors show some 
pattern of deviations between the data (points) and the function (line). For 
example, if you find that points near the center of the range tend to be too 
high (above the line), this is a systematic error. It suggests that the theory or 
experiment or both are missing something or contain extraneous effects. 
Conversely, if the deviations are random, (ie: there is no discernible 
systematic deviation), then the model function is a good fit to the data. This 
evaluation depends entirely on the comparison of systematic vs. random 
errors. It is always possible, in principle, to reduce random errors far enough 
                                           
1 D. Preston and E. Dietz, The Art of Experimental Physics J. Wiley (1991). 
2 P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill 
(1992). 
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to expose systematic errors. The hard part is to identify and correct the 
source of systematic error (whether theory or experiment). New laws of 
physics may be lurking. Such was the case for Einstein’s theory of special 
relativity. Ironically, it is also possible to make random errors large enough 
so that any model function will be a “good fit” to the data. This has been 
proven many times in the Introductory Labs! 
 Back now to interpretation of the fit results, Eq. 4ab. Note first that 
we must invert the function M(S) to write S(M), reflecting the fact that “S” 
is the dependent variable (goes on the Y-axis). Thus we have 
 
  S(M) = (g/k)M + S0 Eq. 5 
 
Comparing with the model function, y(x) = mx+b, we see that the slope and 
intercept are given by  
 
   (slope) = (g/k)  = 0.204 ± 0.005 cm/gm Eq. 6 
 
  (y-intercept) = S0 = -1.8 ± 0.3 cm      Eq. 7 
 
Note that each of these values carries units and uncertainty. You must carry 
these through your calculations! S0 is already in final form, so no further 
work is needed. Determination of “k” requires a little more work, however.  
We solve for “k” in equation 6 as 
 
  k = g/(slope) = 48.0 gm/sec2 = 48.0 x 10-3 N/meter Eq. 8 
 
Note that we have converted gm/sec2 to N/m, which are the more 
conventional units for spring constant. The error in k is given as  
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The two terms are  
  ∆g/g = 0 Eq. 10 
 
  |(-1)(∆slope)/slope)| = 0.0048/0.204 = 0.0235 Eq.11 
 
Thus we have 
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  ∆k = (0.023)*(48) = 1.1 gm/sec2 Eq.12 
 
Here we have used special case I and II from the DataAna handout (simple 
product and power law with m = -1). The final results are stated as 
 
  S0 = -1.8 ± 0.3 cm     (16%) 
  k = 48±1 x 10-3 N/meter    (2%) Eq.13ab  
 
 
  Finally we ask what these results mean, in particular the errors. 
Comparing with the plot, we note that the value for S0 agrees with the visual 
y-intercept of the line. “k” is the inverse slope of the line, and corresponds 
to the stiffness of the spring. A stronger spring would have a smaller slope. 
The kink at 20 gm corresponds to a preset force that must be exceeded 
before the spring begins to stretch. This example could have been simplified 
somewhat by plotting force (=mg) instead of mass on the X-axis, since “g” 
is a well-known constant. We have shown it this way to demonstrate the 
propagation of errors, which must be done in general. Regarding errors in 
the fit values, it is important to realize that 
 

the errors in the fit values have nothing to do with the data error bars! 
 
Instead, they are determined by the mean values of the data points. They 
correspond nominally to the range of values for slope and intercept that 
would bracket 2/3 of the data points. Some analysis programs indicate this 
by drawing a wide line/wedge for the fit function result.  
 

Linearized fits 
Model functions are often more complex than the simple linear 

relation y(x) = mx +b. Data in such cases can still be fit by linear regression 
if the model function can be linearized. For example the model function f(q) 
= Cqn can be linearized by taking the nth root of both sides, as [f1/n] = C1/n 

[q], where we have used [] to indicate that the structure is linear: that is we 
tabulate, plot and fit using y=[f1/n] and x = q. The usual procedure for 
interpreting slope and intercept and their uncertainties apply, as before.  
Linearizing involves algebraic manipulation and/or function inversion. The 
resulting units on the X and Y-axes may look strange, but you must carry 
them though your calculations without fear. Units are your friend (!) since 
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they help identify mistakes in math. Another example is f(q) = C/(q+q0). 
This is linearized as [1/f] = [q]/C + q0, so we have slope =1/C and intercept 
q0. Another common example is the pure exponential function f(q)=exp(-
C/q). This is linearized as [ln(f)] = -C [1/q]. Note that the original variables 
f, q appear on neither axis in this case. 

 In Fig. 2ab we show an example of a linearized plot of y(x) = 
1/(x+x0)2. Note the “funny”, but correct units of the linearized variable. 
Fitting the original function y(x) would require a non-linear fit (see below). 
The nature of the model function and quality of the fit is not readily 
apparent by inspection of this plot. On the other hand, it is immediately 
apparent from the linearized plot that the data are a good fit to the model 
function, since the human eye/brain can readily visualize a straight line.  
From the standard linear regression routine, we get values for slope and 
intercept, plus well-defined error bars for each. 
  

 
Fig. 2 (a) Plot of y(x) = 1/(x+x0)2. The connecting line is only a guide 
to the eye. (b).  Linearized plot and fit. 

 

Non-linear fits 
Not all functions can be linearized. An example is f(q) = Aq2 + Bq. This 

requires a non-linear fit. In Graphical Analysis this is done by either 
selecting a canned function from a list, or writing your own function. The 
procedure and interpretation follow in detail. Menu steps refer to the 
Windows GA program. 



PHY132 ( P. Bennett) -7- 02/14/00 

 
1. Manual fit in GA: Select range of data (all or part); ANALYZE; choose a 

pre-defined function or write your own with OTHER. Type the function 
in the box for y(x), using “X” for the independent variable (regardless of 
what label you gave it). GA assumes that any other letters/words are 
adjustable constants. GA is stupid about parsing expressions so use 
plenty of parentheses. If you start with bad guesses, the theory line will 
be way off – probably not even visible in the range of the graph. Adjust 
the constants to get a reasonable eyeball fit, and write these down on 
paper. You can come somewhat closer by minimizing the Mean Square 
Errors (MSE) which are shown with the fit results. 

2. Auto fit in GA: Select data range \  analysis \ automatic. GA starts autofit 
with all values = 1.0. This has two potential problems: the function curve 
is probably not visible on the chart, and worse, the fitting routine may go 
on a “wild goose chase”, diverging from the true solution. You need to 
“pause” the fit, type in your guesses (now it looks like a manual fit), then 
resume. Once you are close, GA will converge quickly to an optimal fit.  

3. Errors for non-linear fits: The computer shows “± errors” for each 
variable while it is searching, but these are meaningless and disappear 
after you stop the fit. GA does show “Mean Square Errors” (MSE) after 
the fit. This can be used to extract ±errors in the variables by manual 
manipulation. First find the optimal fit using automatic fit, and write 
down the corresponding MSE. Now manually tweak each variable 
slightly off its optimal value until the MSE is twice the minimal value 
you wrote down. You can tweak either plus or minus, it won’t matter 
much. Repeat this procedure for each variable in the function, always 
starting from the original optimal values and MSE. This process does not 
take long if you are systematic, and its kind of fun. You need not obsess 
about precise doubling of MSE, since this is a statistical value, anyway.  

 
 
 


