Definitions for Current and Resistance

AVERAGE CURRENT

The AVERAGE CURRENT \((I_{av})\) through any area \(A\) is the total charge \(\Delta Q\) that passes through that area in time \(\Delta t\), divided by \(\Delta t\).

In Symbols: \[I_{av} = \frac{\Delta Q}{\Delta t} \] in Units of C/s = Amperes (A)

INSTANTANEOUS CURRENT

The INSTANTANEOUS CURRENT \((I(t))\) is the limit as \(\Delta t\) goes to zero of the average current.

In Symbols: \[I(t) = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} \] in Units of C/s = Amperes (A)

CURRENT DENSITY

The CURRENT DENSITY \((\vec{J}(\vec{r}))\) at location \(\vec{r}\) is the time rate of charge flow per unit area through an infinitesimal area located at \(\vec{r}\); the direction of current density is the direction of positive charge flow.

In Symbols: \[\text{IF } \vec{J}(\vec{r}) \text{ is constant over some area } A \] \[|\vec{J}| = \frac{|I|}{A} \] in Units of A/m²

in general for area \(A\) \[I_A \equiv \int_A \vec{J}(\vec{r}) \cdot d\vec{A}. \]

This last equation is often used as the definition of current. Note that current density is a VECTOR while current is a signed scalar.
RESISTANCE
The RESISTANCE \(R \) between any two points on a conducting object is

\[
R \equiv \frac{V}{I} \quad \text{in Units of } \text{V/A} = \text{Ohms (}\Omega\text{)}
\]

where \(V \) is the absolute value of the applied potential difference between those two points, and

\(I \) is the absolute value of the resulting current.

CONDUCTIVITY
The CONDUCTIVITY \(\sigma \) of a material is the ratio of the magnitude of the current density at some point in the material to the electric field strength that produces that current density.

In Symbols: \(\sigma \equiv \frac{J}{E} \quad \text{in Units of } (\text{A/m}^2)/(\text{V/m}) = 1/\Omega \cdot \text{m} \)

or in vector form: \(\vec{J} = \sigma \vec{E} \) \hspace{1cm} (1)

RESISTIVITY
The RESISTIVITY \(\rho \) of a material is the reciprocal of the conductivity.

In Symbols: \(\rho \equiv \frac{1}{\sigma} \quad \text{in Units of } \Omega \cdot \text{m} \)

which allows us to write (1) as \(\vec{E} = \rho \vec{J} \).