Chapter 12
 2. (a) zero            (b) zero
    (c) 80 km/h +x dir  (d) 1500 m/s² 
    (e) 80 km/h -x dir  (f) 1500 m/s²
    (g) 80 km/h +x dir  (h) zero
    (i) 160 km/h +x dir (j) 1500 m/s² 
    (k) zero            (l) 1500 m/s²
 6. solid cylinder - you must explain why
 8. (a) 4 N left        (b) 0.6 kg m²
10. (a) mg(R-r)         (b) (Krot/Ktot) = 2/7
    (c) (17/7)mg
    Note: The assumption that R>>r is not
          necessary.
14. (a) (0.11 m)omega   (b) 2.06 m/s² left
    (c) 46.8 rad/s² CW  (d) 1.18 s
    (e) 8.60 m          (f) 6.07 m/s
16. (a) 0.885 s         (b) 9.35 J
    (c) 1.41 m/s        (d) 0.120 J
    (e) 442 rad/s       (f) 9.23 J
26. (a) (600 kg m²/s)k         (b) (720 kg m²/s)k
34. (a) 0.528 kg m²/s
    (b) 440 rad/s
46. (a) 0.933 rad/s     (b) 98 J
    (c) 8.4 rad/s       (d) 882 J
    (e) calculate work done by each skater
        during pull; adding together yields
        784 J, the amount of increase in K
50. 1290 m/s 
54. 2.57 rad/s
56. 0.06995 rad/s
Fishbane Problems - Chapter 9
45. (a) 2.13 kg m²
    (b) 8.83 kg m²/s
    (c) 0.885 rev
    (d) 18.3 J
50. (a) no change       (b) changes to 4.65 rad/s
Fishbane Problems - Chapter 10
13. (a) 0.064 kg m²/s in the direction of rotation
    (b) 0.064 kg m²/s in the direction of rotation
Problem G2
    (a) (g)sin(theta)/1.53
    (b) (g)sin(theta)cos(theta)/1.53
    (c) 45° - you must explain why
Chapter 14
 8. 2.13 X 10^{-8} N
16. (a) 16.5 N  (b) 2.46 times the radius of the Earth
    (I calculated g of the moon from the mass and radius
     data given on page 305.  If you use g moon from 
     page A-4, you will get (a) 17.0 N (b) 2.43 times)
32. (a) 22.2 MJ (b) 69.5 MJ
34. 24.2 km/s
36. (a) 38.3 MJ (b) 1030 km
54. (2pi)sqrt(r³/G(M+(m/4)))
58. (a) 1/2     (b) 1/2    (c) B by 114 MJ
G1. 0.070 N less
Fishbane Problems - Chapter 8
 6. (a) proof
    (b) r1/r2=m2/m1
Fishbane Problems - Chapter 12
35. 2.99 km/s
55. (a) 1660 m
    (b) 2.83 m/s
    (c) yes; 1.76 m/s
Serway Problems - Chapter 12
41.  (a) v_relative = sqrt(2G(m_1+m_2)/d)
     (b) K_1 = 1.07 x 10^32 J; K_2 = 2.67 x 10^31 J
49. proof - HINT:  Write the 2nd Law for each star, 
    then substitute for the velocity of each star in 
    terms of the radius of that star's orbit and the 
    time to go around once.  Finally, add the two 
    equations.
Chapter 16
 6. (a) 1230 N/m    (b) 76 N
16. 21.6 cm
18. (a) 24.8 cm     (b) 2.23 Hz
20. (a) 0.500 m
    (b) -0.251 m
    (c) 3.06 m/s
30. (a) 1.11 Hz     (b) 0.050 m
32. (a) 200 N/m     (b) 1.39 kg   (c) 1.91 Hz
34. (a) 7.25 MN/m   (b) 49,416
36. (a) mv/(m+M)
    (b) mv/sqrt((m+M)k)
38. (a) -(80 N)cos((2000 rad/s)t-(pi/3))
    (b) 3.14 ms
    (c) 4 m/s
    (d) 0.08 J
40. (a) 0.735 kg m² 
    (b) 0.024 N m/rad
    (c) 0.181 rad/s
48. (a) 0.869 s     (b) 6.25 cm
58. (a) (r/R)sqrt(k/M)
    (b) sqrt(k/M)
    (c) zero
64. 4.97 cm