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PHY 132 – Summer 2000
LAB 3: Electric Potential and Electric Fields1

Introduction

A vector field is a map of vectors at every point in space. This is one of the more difficult
concepts in introductory physics courses. In this lab we will visualize and measure a 2-
dimensional electric field for conductors immersed in water. We’ll see that field lines are:
1. Perpendicular to a conductor
2. Zero inside a closed conductor
3. Exhibit a symmetry that matches the shape of the conductors.
We will also measure equipotential lines for the same field, and combine the concepts of
field and potential maps. In this lab, we will make a map of the electric potential
surrounding electrodes in a water tank.  From these measurements you can determine the
associated electric field.  You will also confirm that the potential inside a coaxial capacitor
varies as ln(r).  You should be familiar already with the conceptual background for these
experiments from the PHY131 course.

1. Electric Fields

Equipment:

Fig. 1: 3-point field probe.

We use a 3-point probe to measure two orthogonal components of electric field (Ex and
Ey) at the same time. This probe is shown in Fig. 1. We use pins 1,3,5, which form an
orthogonal pattern. The voltage V3,5 is proportional to Ex and V3,1 is proportional to Ey.
These voltage readings correspond physically to the energy lost by charges in moving

                                       
1 Adapted by R. J. Jacob from P. Bennett, PHY-132 Lab Manual (ASU)
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between the two pins, which is proportional to the average electric field between the pins.
This is closely equal to its value at the midpoint between pins. Note that Ex and Ey are at
slightly different locations, and both are offset slightly from the center of the plug. Data
are taken by translating the probe around the tank, taking care to maintain its angular
orientation. It is important that the probe reaches to bottom of the tank and not be tilted.

The entire apparatus is shown in Fig. 2. We use an AC source to generate the field in the
water tank. This allows use of a scope to continuously monitor the probe output and
provide a graphic representation of the Exy vector. The circuit includes an isolation
transformer, which is necessary because the scope inputs are grounded, but the
conductors in the water tank must be “floating”.

Fig. 2. Apparatus for measuring electric field maps.

Procedure

1. Setup:

Arrange the conductors as shown in Fig. 2, but without the center ring for now. Put the

probe in the tank near the center. Set the signal generator at 200 Hz and maximum

amplitude. Set the scope inputs on XY (NOT timebase), and matching sensitivities (about

50mV). The trace should fill the screen. Be sure both channels match, so the display scale

is square, not rectangular. You should see a tilted line or ellipse. The peak-peak readings

of the extremities of the ellipse correspond to Ex and Ey. Because we use AC, there is an

ambiguity of ±180 degrees in the field direction. Lets use Ex positive by convention.
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2. Calibrate the probe:

Put the probe near the center of the tank with  no ring. Take readings of Ex and Ey for

about 10 angular orientations from 0 to 180 degrees, without shifting the location. Don’t

obsess about the angle, you will derive it from the Exy data (tanθ = Ey/Ex).  Hopefully you

see a vector of nearly constant magnitude vs angle (see analysis later).

3. Field Map:

Place the ring in the tank, carefully centered between the bars. Take measurements of Ex,

Ey at many locations in the tank, sufficient to draw a reasonable map of the field

everywhere between the bars. Be careful to hold the probe orientation fixed at zero

degrees. Data should be tabulated and simultaneously marked with vectors on the

matching paper grid. It is useful to choose symmetric locations (top/bottom/left/right)

within the conductor array. Be sure to include a few points as close as possible to the

ring, both inside and outside.

Analysis

1. Probe calibration: Plot the magnitude of electric field vs. angle. What is the random

noise in this measurement? Is there any systematic deviation in the data?

2. Field Map: Based on your vector data, draw a set of field lines that reasonably

indicates the field everywhere between the bars. You will be graded on the quality of

this field map. It must be derived from your actual data, and it should display correct

physical behavior. Is there any pronounced asymmetry in the field?

3. 

4. Mapping Equipotentials

Theory

Electric potential V(r) is an example of a scalar field. It takes a scalar value at all
points in space. This can be charted as a family of equipotential lines. Since this is a
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conservative field, there is an associated vector field, E(r) which we studied last time. The
E-field takes a vector value at all points in space. The two are related by

E(r) = -grad[V(r)] Eq. 1

or, in X-Y components

Ex = -[dV/dx] i
Ey = -[dV/dy] j Eq. 2ab

where these are partial derivatives. The gravitational field provides a useful mechanical
analog. Here, Vg(r) is work done against gravity, and can be charted as a contour map of
elevation. Then –grad[V] corresponds to the local slope (downhill), which has both
magnitude and direction. Indeed, this represents the force per unit mass pulling downhill,
as any snow-boarder could tell you!

For any given (conservative) scalar field the associated vector field can be derived
from Eq. 1. It may be useful to construct a map of field lines derived from the potential.
This is done using the principle that field lines are everywhere perpendicular to the
equipotential lines. They start and end on +/- charges, respectively, and do not cross.
Their density (number per unit area) is proportional to field strength, hence inverse to the
spacing between equipotential lines. In practice, one can evaluate E at any location on a
potential map, working in polar coordinates. That is, the direction of E is normal to the EP
lines, and the magnitude of E is given by ∆V/∆S. Here we use finite difference to evaluate
the derivative of Eq. 1. Thus, ∆V = V2-V1 is the difference in potential for a closely
spaced pair of lines, and ∆S is the spacing between the lines.  The units of E, follow the
unit of V and S, of course.

Coaxial cylinders

The field between coaxial cylinders is radial and given as

E(r) ~ 1/r. Eq. 3
Hence the potential is given as

V(r) ~ ln(r) Eq. 4
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Procedure

1. Set up the dipole conductors as used in the previous lab. Measure the potential at

many points in space, sufficient to make a decent map. This is best done by following

a given potential line. That is, chose a potential, say 3.0 V then map the line of all

points with this potential. Repeat for another potential.

2. Choose a location near the center of the tank, then measure the potential with and

without the copper ring surrounding the probe. Explain.

3. Place the graphite bar at the center of the tank, and measure the potential next to it with

the bar oriented parallel vs. perpendicular to the dipole axis. Explain.

4. Select a location between two nice contour lines, somewhat off the tank center (see

class). Determine the field here, based on your data for potential lines. Then measure

the field at the same location, using the field probe from last week. Compare the two.

5. (Optional) Set up coaxial cylinders (see class). Using the field probe, qualitatively

explore the field between the cylinders, and describe this in your report.

6. Measure V(r) for the coaxial cylinders. This field has radial symmetry: points at a given

radius should match V. Take 4 readings (spaced 90 degrees around the circle) at each

radius. This serves to establish errors.

Analysis

1. Dipole: How will you characterize errors for the dipole field? We don’t really have a

model function for this particular field, but we can use the powerful concept of

symmetry. We know that the field will have the same symmetry as the conductor

shapes. In this case, there are two mirror planes. That is, the potential map should

match left-right and top-bottom. You can flip your data over and trace it (inverted)

onto itself. Do this for both mirror planes, and turn in this symmetrized data for your

report. Based on this plot, estimate the errors (in volts) in your potential map.
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2. Coaxial cylinders: Is the model function in Eq. 4 a good fit to the data? Hint: Make a

linearized plot. You don’t need to set error bars in GA, just plot all the data. That is,

errors are apparent from the spread in V values at a given “r”.


