Chapter 24 32. 563 nJ/m³ Chapter 26 12. 25 Ohm - 7.00 A; 20 Ohm - 9.95 A 58. 8.60 V 84. (a) 7.10 J (b) 3.62 kW (c) 1.81 kW Fishbane Problems - Chapter 28 57. proof Halliday 2nd Ed Problems - Chapter 29 22. (a) by integration, U_C = (1/2)C(EMF)² and energy out from battery = C(EMF)² (b) by integration, heat from resistor = (1/2)C(EMF)² Chapter 29 2. (a) before - 14.4 micro Wb; after - zero (b) 0.360 mV 6. (a) 0.0302 V + (0.302 mV/s³)t³ (b) 0.113 mA 24. (a) 3.00 V (b) towards top of page (c) 0.800 N to the right (d) 6.00 W for each 27. (c) 530 microN/C (d) counterclockwise 32. (a) 950 microV (b) 109 microH 54. (a) (mu_0)i/(2pir) into page (b) L(mu_0)i(dr)/(2pir) (c) ln(b/a)L(mu_0)i/(2pi) (d) ln(b/a)L(mu_0)(di/di)/(2pi) CCW (e) 0.506 microV 76. (a) from a to b (b) (Rmg)tan(phi)/(L²B²cos(phi)) (c) (mg)tan(phi)/(LB) (d) Rm²g²tan²(phi)/(L²B²) (e) same answer as in (d) by a different method Wolfson - Chapter 30 42. (a) (mu0)J(|z|) (b) (mu0/2)Jh 48. (a) (mu0)I(sqrt(n²+(1/2piR)²)) (b) INVtan(1/2(pi)nR) 57. proof; out of the page 58. proof; out of the page 68. (a) (pi/3)R²J_0 (b) (mu0/6r)R²J_0 (c) (mu0/2)rJ_0(1-(2r/3R)) HRW PROBLEM SUPPLEMENT #1 - CHAPTER 30 73. (a) 4.8 mT (b) 0.933 mT (c) zero Fishbane Problems - Chapter 30 32. (a) Bmax = 174 microT; Bmin = 139 microT <== these answers use (b) 0.140 microWb (1 Wb = 1 T⋅m²) HRW's value of rho_CU (c) heating rate is 1.57 W; doesn't get very hot (16.9 nOhms⋅m) (a) Bmax = 175 microT; Bmin = 140 microT <== these answers use (b) 0.141 microWb (1 Wb = 1 T⋅m²) Wolfson's value (c) heating rate is 1.58 W; doesn't get very hot (16.8 nOhms⋅m) (a) Bmax = 171 microT; Bmin = 137 microT <== these answers use (b) 0.138 microWb (1 Wb = 1 T⋅m²) Y&F's value (c) heating rate is 1.54 W; doesn't get very hot (17.2 nOhms⋅m) Halliday 2nd Ed Problems - Chapter 30 9. (a) 20 min (b) 59.4 m(N⋅m) 22. (a) 3750 m/s (b) drawing 29. (a) 2.60 x 10^6 m/s (b) 0.109 microseconds (c) 141 keV (d) 70.3 kV 31. (-11.4 N/C)i - (6 N/C)j + (4.8 N/C)k Chapter 30 18. (a) 4.35 mT (b) 7.53 J/m³ (c) 1.52 microm³ (d) 11.4 microJ (e) 3.65 microH (f) same as (d) by a different method 44. (a) (23.4 V)sin((240pi rad/s)t) plus a graph (b) max EMF = 23.4 V; zero (c) max I = 124 mA; zero 50. (a) (mu_0)i/(2pir) (b) [(mu_0)i/(2pir)]l(dr) (c) [(mu_0)i(l)/(2pi)]ln(b/a) (d) proof (e) [(mu_0)i²(l)/(4pi)]ln(b/a) 58. (a) proof (b) at 5T/8 60. (a) 24.0 mV (b) 1.55 mA (c) 72.1 nJ (d) Q = 5.20 microC; U_L = 18.0 nJ 64. (a) V1 = 33.3 V; V2 = V4 = 16.7 V; V3 = 0 V A1 = A3 = 0.333 A; A2 = 0 A (b) V1 = 38.5 V; V2 = 0; V3 = V4 = 11.5 V A1 = 0.385 A; A2 = 0.153 A; A3 = 0.230 A 66. (a) V1 = 25 V; V2 = V4 = 50.0 V; V3 = 0 V A1 = A3 = 0.500 A; A2 = 0 A (b) V3 = 75.0 V; all other meters read zero (c) 5.63 microC; long after S is closed 68. (a) 894 microC (b) 20.0 mJ (c) graph 70. (a) i1 = 1.50 A; i2 = 1.80 A (b) 2.40 A Halliday 2nd Ed Problems - Chapter 31 5. proof 25. (a) 78.5 microT (b) 1.08 microN⋅m Chapter 31 32. (a) 945 rad/s (b) 70.6 ohms (c) resistor - 120 V; capacitor - 450 V; inductor - 450 V (d) V4 = 0 V; V5 = 84.9 V (e) V1 = 27.4 V; V2 = 70.1 V; V3 = 150.4 V; V4 = 80.3 V; V5 = 84.9 V (f) V1 = 36.6 V; V2 = 180.6 V; V3 = 104.0 V; V4 = 76.6 V; V5 = 84.9 V Wolfson - Chapter 32 9. ((mu_0)l/2pi)ln((a+w)/a) corrected at 3 PM Wed. Halliday 2nd Ed Problems - Chapter 32 7. 0.452 V HRW PROBLEM SUPPLEMENT #1 - CHAPTER 32 28. (a) 1.89 pT (b) graph; at 10 cm, B = 0.565 pT 38. (a) (4/3) A (b) at R/4 and at 4R Chapter 32 14. 15.9 microJ 50. 61.4 kV/m and 205 microT Halliday 2nd Ed Problems - Chapter 33 11. (a) 238.7 W (b) 154.8 W (c) 393.5 W 12. (a) 18.7 J (b) 5.10 J (c) 13.6 J Fishbane Problems - Chapter 33 46. DiffEq is -I(t)R - L(dI/dt) = 0 HRW PROBLEM SUPPLEMENT #1 - CHAPTER 33 50. 100 V (you must carefully explain why) HRW PROBLEM SUPPLEMENT #1 - CHAPTER 34 6. 4.74 m Wolfson - Chapter 34 6. (a) 7.20 x 10^{11} (V/m)/s (b) increasing 52. 3.50 gauss G1 and G2: proofs Chapter 33 58. (a) 17 on the power line side to 1 on the house side (b) 39.1 A (rms) HRW PROBLEM SUPPLEMENT #1 - CHAPTER 33 5. (a) n(5.00 microseconds) where n=1,2,3,4,... (b) (2n+1)(2.50 microseconds) where n=0,1,2,3,4,... (c) (2n+1)(1.25 microseconds) where n=0,1,2,3,4,... 12. (a) 3.6 mH (b) 1326 Hz (c) 189 microseconds 44. (a) 16.6 Ohms (b) 422 Ohms (c) 521 mA (d) 33.2 Ohms (e) 408 Ohms (f) 539 mA 50. 100 V (you must carefully explain why) Halliday 2nd Ed Problems - Chapter 36 1. (a) 5.22 mA (b) zero (c) 4.52 mA (d) taking energy (you must explain why) 2. (a) 39.1 mA (b) zero (c) -33.9 mA (d) supplying energy (you must explain why) 4. 0.6 A for all frequencies 17. (a) 76.4 mH (b) yes; 17.8 Ohms; resistor would consume energy, not store it