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Abstract—In this paper, we introduce the problem of learning
graphical models from size constrained measurements. This is
inspired by a wide range of problems where one is unable to
measure all the variables involved simultaneously. We propose
notions of data requirement for this setting and then begin
by considering an extreme case where one is allowed to only
measure pairs of variables. For this setting we propose a simple
algorithm and provide guarantees on its behavior. We then
generalize to the case where one is allowed to measure up to
r variables simultaneously, and draw connections to the field of
combinatorial designs. Finally, we propose an interactive version
of the proposed algorithm that is guaranteed to have significantly
better data requirement on a wide range of realistic settings.

Index Terms—Gaussian graphical models, active learning,
sample complexity, combinatorial designs

I. INTRODUCTION

Probabilistic graphical models provide a powerful and flexi-
ble framework for expressing the relationships between a large
number of entities in a complex system. It is unsurprising
therefore that they are finding applications in a large number of
complex domains from statistical physics and computational
biology to computer vision and natural language processing
to computational biology and statistical physics. In this paper,
we consider the problem of learning the structure of graphical
models from data observed from the underlying system. This
is useful as it not only may reveal some fundamental rela-
tionships between the underlying variables, but also because
it provides a computationally efficient representation of a
complex system that could be invaluable for downstream
processing.

Unfortunately, in several scenarios where there is a need
to perform structure learning, the number of observations is
typically much smaller than the total number of variables
– the so called high-dimensional regime. It is known that
many natural sufficient statistics such as the sample covariance
matrix are poorly behaved (see e.g., [1], [2]). A recent exciting
line of work has explored many conditions under which this
problem becomes tractable (e.g., [3]–[6]). Various authors have
discovered that by constraining both the structure of the graph
and the parameters of the probabilistic model, there is a wide
range of interesting situations where given O (log p) samples
from the underlying distribution, one can learn the structure
and sometimes even the parameters of the underlying graphical
model.

This paper considers the structure learning problem from
a different point of view. We are motivated by a wide va-
riety of applications where it might be impossible to obtain
measurements from all the variables involved in the system
simultaneously. For instance, in two-photon calcium imaging
(see e.g., [7]) which provides state-of-the-art spatial and tem-
poral resolution for measuring neuronal activity, there are hard
constraints on the number of neurons that can be measured
simultaneously. In a sensor network, obtaining a sample across
all the sensors requires intensive synchronization procedures
(see e.g., [8]) that may be infeasible in a power-starved system.
Similarly in many other problem domains like proteomics
[9] and neuroscience [10], [11], it might be much easier to
obtain (marginalized) samples from small subsets of variables
as opposed to full snapshots.

[12] proposed to handle this problem using an interac-
tive procedure that sequentially and adaptively reduces the
number of variables it needs measurements from. While such
algorithms are known to compare favorably with traditional
algorithms and are known to have near optimal data require-
ments [13], they still require several measurements from the
entire system. In this paper, we consider the setting where
this is not just undesirable, but rather impossible. We pose the
problem of graphical model selection from size constrained
measurements, and propose notions of data requirement for
this setting. We then begin by considering an extreme case
where one is allowed to only measure pairs of variables, and
we propose a simple algorithm and provide guarantees on its
behavior. We then generalize to the case where one is allowed
to measure no more than r variables simultaneously, and draw
connections to the field of combinatorial designs. Finally, we
propose an interactive version of the proposed algorithm that
is guaranteed to have significantly better data requirement on
a wide range of realistic settings.

II. PROBLEM SETUP AND NOTATION

Let G = ([p], E) denote an undirected graph on the vertex
set [p] = {1, 2 . . . , p} with an edge set E ⊆

(
p
2

)
. To each

vertex i of the graph, we associate the i−th component of a
0−mean Gaussian random vector X ∈ Rp. X is distributed
according to the multivariate normal distribution with covari-
ance matrix Σ ∈ Rp×p; the density of X is of course given
by fX(x) = 1√

(2π)p det (Ω)
exp

{
− 1

2x
ᵀΩx

}
, where Ω = Σ−1



is the p−dimensional inverse covariance (or concentration)
matrix of the distribution. We will abbreviate this density as
N (0,Σ) in the sequel.
X is said to be Markov with respect to the graph G if for

any pair of vertices i and j, {i, j} /∈ E implies that Xi and Xj

are conditionally independent given the values of X[p]\{i,j}
1.

By the Hammersly - Clifford theorem [14], we know that for
all {i, j} /∈ E, Ωij = Ωji = 0. We will also use the fact
that Xi and Xj are conditionally independent given a set of
variables S is equivalent to saying ρij|S = 0 for the Gaussian
distribution. We will refer to the pair (G,Σ) as the (Gaussian)
graphical model. For a vertex i ∈ [p], we will let N(i) denote
the neighborhood of the vertex in the graph and let di , |N(i)|
denote the degree. We will assume that di ≤ d, for some
constant d ∈ N for the graphs considered in the sequel.

The goal of the structure learning problem is to recover the
structure of the graph G given samples from the distribution
f . That is, we would like to construct an estimate Ê of the
edge set E. As mentioned in Section I, in this paper we are
interested in the setting where our estimator can only access
the distribution by obtaining samples of size at most r. That
is, the algorithm is allowed to specify a sequence (Sk, nk) ∈
2[p] × N, k = 1, 2, . . . ,m such that |Sk| ≤ r. The algorithm
then observes nk i.i.d copies of XSk for each k ∈ [m]; notice
that the distribution of XSk is given by N (0,Σ(Sk)), where
by Σ(Sk)) we mean the submatrix of Σ corresponding to
only the rows and columns corresponding to Sk. We will call
such an algorithm an r−constrained algorithm. In order to
characterize the performance of such an algorithm, we posit a
natural measure of complexity along the lines of [12] – we will
measure the total number of scalars that the algorithm accrues
to deliver an estimate of a particular accuracy at a required
confidence level. Towards this end, notice that an algorithm A
that specifies (Sk, nn) ∈ 2[p] ×N accumulates a total number
of scalars that is given by ntot(A) ,

∑m
k=1 nk |Sk|. We will

now define the following notion of data requirement for this
problem.

Definition 1 (r−Sample Complexity). We will say that a
graphical model (G,Σ) can be learnt with an r−sample
complexity of n0 if the following holds. Fix δ ∈ (0, 1). Then,
there exists an r−constrained algorithm A and a function
n0 : (0, 1) → N such that whenever ntot(A) ≥ n0(δ), A
returns an edge set Ê that satisfies P[Ê 6= E] ≤ δ.

In what follows, we will investigate the learnability of Gaus-
sian graphical models by r−constrained algorithms and to
especially understand the data requirement of these algorithms
by understanding their r−sample complexities.

III. THE CASE OF r = 2

In this section, we will first consider an extreme version
of this problem where we’re only allowed to look at pairs of
variables. In what follows, we will establish a bound on the

1We will write XA for A ⊂ [p] to denote the vector in R|A| that is a
concatenation of {Xi : i ∈ A}.

2−sample complexity by demonstrating an algorithm and an-
alyzing its data requirement. The algorithm is computationally
unsophisticated, and essentially performs an exhaustive search
over all possible conditional independence relationships. This
can be easily improved by instead using our estimates of
the partial correlations in the PC algorithm [15], [16] which
organizes the conditional independence tests carefully. Our
algorithm will rest on the following recursive definition of
the partial correlation coefficient. Given i, j ∈ [p] and S ⊂
[p] \ {i, j}, the following holds for any k ∈ S:

ρij|S =
ρij|S−k − ρik|S−kρjk|S−k√
(1− ρ2

ik|S−k
)(1− ρ2

jk|S−k
)
. (1)

Therefore, the partial correlation coefficients can be recur-
sively computed from partial correlation coefficients of lower
orders. And of course, the unconditional partial correlation is
the regular (Pearson) correlation coefficient and is given by
ρXY = Cov(X,Y )/σXσY . We will now characterize the

Algorithm 1
Input: Threshold η > 0.

1: Initialize Ê =
(
p
2

)
, the complete graph

2: for Each pair each pair i, j ∈ [p] do
3: for Each set S ⊂ [p] such that |S| ≤ d do
4: Compute ρ̂ij|S according to (1)
5: if

∣∣ρ̂ij|S∣∣ < η then
6: Ê = Ê \ {i, j}; break
7: end if
8: end for
9: end for

performance of this algorithm and thereby an estimate of the
2−sample complexity of learning a bounded degree Gaussian
graphical model. In order to do this we need some assumptions
on the parameters:
(A1) The distribution of X is faithful to G.
(A2) For each i, j ∈ [p] and S ⊂ [p] with |S| ≤ d, we

have ρij|S ≤M . Furthermore, if Xi is not conditionally
independent of Xj given S, then we have ρij|S ≥ m

Assumption (A1) is a standard assumption in the graphical
model selection literature and is violated only on a set of
measure 0 (see e.g., [15], [17]). Assumption (A2) has appeared
in the literature (e.g., [16]) as a way of strengthening the faith-
fulness assumption. While the upper bound in assumption (A2)
is a mild regularity condition, the lower bound of (A2) may be
hard to verify in practice. However, under certain parametric
and structural conditions, one can obtain a handle on m. For
example, the authors in [6] show that if the underlying graph
has small local separators and if the concentration matrix is
walk-summable, then m in (A2) can be replaced essentially
by the smallest non-zero entry of the concentration matrix.

Theorem 1. Fix a δ ∈ (0, 1). There is a constant C0 > 1
that depends only on m and M from Assumptions (A1) and
(A2) such that Algorithm 1 succeeds in recovering the edge set
of the graph G with probability greater than 1− δ, provided



that the total number of scalar samples the algorithm obtains
satisfies

ntot ≥ Cd0
(
p

2

)
× log

(
p2

δ
log

((
p
2

)
δ

))
. (2)

We will now sketch the proof of this theorem.
Proof: (Sketch) The first step to proving this theorem is to
notice that the algorithm succeeds in recovering the graph
if we have the exact partial correlation coefficients. This
follows from the definition of the partial correlations and the
faithfulness assumption (A1); for more on this, see e.g., [15],
[16].

Let E denote the event that there was error in the recovery
of the graph structure. Notice that this error occurs only when
there is a particular conditional independence test that fails. If
we let Eij|S denote an error in the conditional independence
test of Xi and Xj given XS , then we have the following

P [E ] = P

 ⋃
i,j∈[p],S⊂[p]\{i,j}

Eij|S

 ≤∑
i,j,S

P
[
Eij|S

]
. (3)

Let us now consider one of the terms in (3) Notice that

P
[
Eij|S

]
= P

[∣∣ρ̂i,j|S∣∣ ≥ η]1 {Xi ⊥⊥ Xj | XS}
+ P

[∣∣ρ̂i,j|S∣∣ ≤ ξ]1 {Xi 6⊥⊥ Xj | XS} (4)

Now, we will consider the first term in (4). This term is non-
zero only when Xi ⊥⊥ Xj | XS . Therefore, we will assume
that this is the case and note that this implies ρi,j|S = 0. We
then have

P
[∣∣ρ̂i,j|S∣∣ ≥ ξ]1 {Xi ⊥⊥ Xj | XS} ≤ P

[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ ξ]
Similarly, the second term in (4) is nonzero only when Xi 6⊥⊥
Xj | XS . This implies, by (A2), that ρi,j|S ≥ m. Now, observe
that the conditions

∣∣ρ̂i,j|S∣∣ ≤ ξ and
∣∣ρi,j|S∣∣ ≥ m together

imply that
∣∣ρi,j|S∣∣ − ∣∣ρ̂i,j|S∣∣ ≥ m − ξ ⇒

∣∣ρi,j|S − ρ̂i,j|S∣∣ ≥
m− ξ, since we will choose m > ξ. Therefore, we have

P
[∣∣ρ̂i,j|S∣∣ ≤ ξ]1 {Xi 6⊥⊥ Xj | XS}

≤ P
[∣∣ρ̂i,j|S − ρi,j|S∣∣ ≥ m− ξ] (5)

Putting these two expressions in (4) and setting ξ = m/2, we
have the following upper bound

P
[
Eij|S

]
≤ P

[∣∣ρ̂ij|S − ρij|S∣∣ ≥ m/2] . (6)

Therefore, to conclude establishing an estimate on the above
probability it suffices to establish a concentration result on the
partial correlation coefficient. We note here that while standard
results for the concentration of the partial correlation exist
in the literature (e.g., [16]), these do not apply here since
we do not measure the variables Xi, Xj , XS simultaneously.
We instead establish a (weaker) concentration result using the
recursive formula for partial correlations.

Lemma 1. Let us suppose that
∣∣ρ̂ij|S − ρij|S∣∣ ≤ ε1 for all

pairs i, j ∈ [p] and all subsets S ⊂ [p] that have cardinality
|S| ≤ k− 1. This implies that there is a constant C > 0 such

that the following bound holds for all pairs of vertices i, j ∈
[p] and subsets S ⊂ [p] with |S| = k:

∣∣ρ̂ij|S − ρij|S∣∣ ≤ Cε1,
where C is only a function of M from Assumption (A2).

Proof: (Sketch) This result can be shown to be true by
bounding the partial derivatives of the function in (1) with
respect to ρij|S−k , ρik|S−k , ρjk|S−k . We will omit the details
of this proof in this short abstract.
�

This means that if we set α = 3
√

1−M2

M5 , and if |ρ̂ij − ρij | ≤
m/2αd for all pairs i, j ∈ [p], then we have the follow-
ing relationship for i, j, S, where S ⊂ [p] and |S| ≤ d:∣∣ρ̂ij|S − ρij|S∣∣ ≤ m

2 .
The probability of making an error in a conditional in-

dependence test therefore is bounded from above by the
probability that there is a pair of vertices i, j ∈ [p] such
that |ρ̂ij − ρij | ≥ m

2αd
= ε0. We can now use the following

concentration result for the standard correlation coefficient; see
for instance [16]:

Lemma 2. Provided (A2) holds, given n samples from the pair
(Xi, Xj), the empirical correlation coefficient ρ̂i,j satisfies the
following

P [|ρ̂i,j − ρi,j | ≥ ε] ≤ C1 (n− 2) e
−(n−4) log

(
4+ε2

4−ε2

)
, (7)

where C1 > 0 is a constant that depends on M from (A2).

From Lemmas 1 and 2, we can bound the probability of
error as follows

P

⋃
i,j

|ρ̂ij − ρij | ≥ ε0

 ≤ (p
2

)
C1(n− 2)e

−(n−4) log

(
4+ε20
4−ε20

)
.

(8)

It is not hard to verify that there is a constant C2 such that
if we choose n ≥ C2ε

2
0 log

(
C2p

2

δ log
(
p2

δ

))
.

then, the above probability can be guaranteed to be less than
δ. To conclude the proof, we simply observe that there are

(
p
2

)
pairs, and the value of ε0 = m

2 ( 1
α )d; this gives us the total

2−sample complexity stated in the theorem.
�

IV. THE r ≥ 3 CASE: CONNECTION TO COMBINATORIAL
DESIGN THEORY

In this section, we will consider the same problem when
we are allowed to measure 3 or more variables at once. It
is of course easy to see that we can achieve an r−sample
complexity of the order stated in Theorem 1 – to compute
the correlation coefficient between a pair of variables Xi

and Xj , one could simply ignore the fact that we’re allowed
to measure three variables at once and just measure the
pair (or, equivalently measure these two along with a third
arbitrary variable Xk). Therefore, to understand the statistical
benefit of measuring several random variables at once, we will
instead focus on whether we can cover all the elements of the
covariance matrix using correlations measured from variables
r at a time. Towards this end, we will define the following.



Problem 1 (r−covering). Given a family of subsets Sk ⊂
[p], k = 1, . . . ,m, we say that {Sk} is an r−covering of [p]
if (a) |Sk| ≤ r for all k ∈ [m] and (b) for each pair i, j ∈ [p],
there is a k ∈ [m] such that i, j ∈ Sk.

We will denote the smallest m such that there is an
r−covering of [p] as mrp, and call this the r−covering

number. Clearly mr,p ≥
(p2)
(r2)

since each set Sk can only

contain a maximum of
(
r
2

)
pairs and there are a total of(

p
2

)
pairs that need to be covered. The r−covering number

is directly related to the data requirement for the graphical
model selection problem in question.

Theorem 2. Consider the graphical model selection problem
for (G,Σ) where the learning algorithm is allowed to measure
up to r variables at once. Suppose that mr,p is the r−covering
number for this value of r and p. Then, for any δ ∈ (0, 1),
there is an algorithm that succeeds in recovering the edge set
of the graph G with probability greater than 1− δ, provided
the total sample complexity n satisfies

n ≥ Cd0mr,p log

(
p2

δ
log

(
p2

δ

))
. (9)

Proof: (Sketch) We will present a brief sketch of the proof
in this short abstract. Suppose that Sk, k = 1, 2, . . . ,mrp are
the family of subsets that correspond to the r−cover, then the
reconstruction algorithm would proceed as follows. For each
pair i, j ∈ [p], the algorithm will choose the k ∈ [mrp] such
that Sk 3 i, j. The algorithm will then estimate ρ̂ij using the
samples from XSk and use these estimated correlations in an
exhaustive search, exactly as in Algorithm 1. �

Notice that Theorem 2 simply provides guarantees on the
r−sample complexity without explicitly providing an algo-
rithm. In particular, the algorithm that achieves the stated sam-
ple complexity needs an explicit r−covering of size mrp. The
astute reader will have observed r−coverings simply depend
on the parameters p and r. For instance, for p = 7 and r = 3,
the following family of subsets is a minimal r−covering:
{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6},{2,5,7}, {3,4,7}, {3,5,6}. In
fact, such combinatorial constructions (called block designs)
have been the subject of a long line of research broadly termed
combinatorial design theory, and the interested reader may
refer to [18], [19], for instance.

While several lines of work in this area consider the issues
of the existence of exact block designs, where the target is to
construct the r−covering set of minimal size (when the ob-
vious divisibility conditions are satisfied), for the purposes of
this paper, we will be satisfied r−coverings that are only close
to minimal. Towards this end, there exist efficient randomized
algorithms (cf., Rödl’s Nibble [20], [21]) that allows one to
obtain a covering of size (1 + o(1))

(
p
2

)
/
(
r
2

)
. This allows us to

state the following corollary.

Corollary 1. There is an (explicit) algorithm for recon-
structing a graphical model (G,Σ) that succeeds in recon-
structing the edges exactly with probability greater 1 − δ

provided the total number of scalar samples n satisfies ntot ≥
Cd0

(p2)
(r2)

log
(
p2

δ log
(
p2

δ

))
.

Given that this at the heart of this construction is a nearly
optimal r−covering of the covariance matrix, one might
wonder if this can be improved. In the next section, we show
that this total sample complexity can be vastly improved if the
reconstruction algorithm is allowed to be interactive.

V. ACTIVE LEARNING FOR GRAPHICAL MODEL
SELECTION FROM SIZE-CONSTRAINED MEASUREMENTS

Inspired by [12], we ask whether one might improve the
total sample complexity by allowing the reconstruction al-
gorithm to be interactive. In particular, if the algorithm can
sequentially and adaptively select which subsets to measure
and decide how many samples it needs from these subsets,
can one hope to improve the sample complexity? The answer
turns out to be affirmative in most realistic situations where
the graph has an inhomogeneous degree distribution. The
algorithm we will present will assume we have access to a
subroutine rCover(p, r) (say, like in [20], [21]) that produces
a nearly optimal r−cover of [p]. We will now present a
modification of the AdPaCT algorithm of [12] that applies
to the size constrained graphical model selection problem.

Algorithm 2 SC-AdPaCT: Size-Constrained Adaptive Partial
Correlation Testing
Require: : Threshold ξ > 0

1: Initialize: ` = 1, N̂(i),∀i ∈ [p], NBDFOUND, SETTLED
to ∅(the empty set)

2: repeat
3: Obtain an r−covering {Sk} of [p]\SETTLED from

rCover(p− |SETTLED| , r)
4: Obtain n` = α` log

(
p2

δ log
(
p2

δ

))
independent sam-

ples from each XSk .
5: for each i ∈ NBDFOUNDc do
6: S = {S ⊂ SETTLEDc : |S| = `,maxj /∈S

∣∣ρ̂ij|S∣∣ ≤ ξ}
7: if S = ∅ then
8: continue
9: else

10: Set N̂(i) = arg minS∈S
∣∣ρ̂ij|S∣∣

11: end if
12: end for
13: S = {i ∈ NBDFOUND : N̂(i) ⊂ NBDFOUND}
14: SETTLED = SETTLED

⋃
S

15: ` = `× 2
16: until NBDFOUND= [p]

We will now briefly describe Algorithm 2, which is a
modification of the AdPaCT algorithm of [12] and allows
for size constrained graphical model selection. We start with
an empty graph on [p] and initialize counter ` to 1 and
sets NBDFOUND, SETTLED to ∅. NBDFOUND will be used
to keep track of the vertices whose neighborhood estimates



the algorithm is confident about and SETTLED keeps track
of the vertices that no longer need to be sampled from.
Notice that the faster SETTLED is populated, the better the
performance of Algorithm 2, since in successive stages only
the vertices in SETTLEDc are sampled. The algorithm then
loops over ` (by doubling) until NBDFOUND = [p]. At
each iteration, the algorithm obtains first a covering of the
“unsettled” vertices using the rCover subroutine and obtains
n` = α` log

(
p2

δ log
(
p2

δ

))
independent samples from XSk

for each Sk in the covering. Next, for each vertex i /∈
NBDFOUND the algorithm uses partial correlation testing (as
in Algorithm 1) to obtain an estimate of a neighborhood of i
of size at most `. If this is possible to find, the algorithm adds
i to the set nbdFound. Finally, the set SETTLED gets updated.
Any i in NBDFOUND whose entire estimated neighborhood is
in NBDFOUND gets enrolled in SETTLED and does not get
sampled henceforth. That is, the algorithm “settles” a vertex
i ∈ [p] if it is both confident about the vertex’s neighborhood
and about the neighborhood of i’s neighbors. It is this step
that gives our algorithm its improved total sample complexity.

We will now state a performance guarantee for this algo-
rithm. Towards this end, we will define the following notion
of complexity of the graph G, for each ` = 1, 2, . . . , d, we
will p` be defined as follows

p(`) = p− |{i ∈ [p] : di < `, and ∀j ∈ N(i), dj < `}| .

Notice that p(1) = p and p(`) = 0 for ` > d. Also, notice
that for graphs whose degree distributions are homogenous, the
sequence p(1) ≈ p(2) ≈ · · · ≈ p(d) ≈ p. On the other hand, for
graphs whose degree sequence is rather inhomogeneous (as is
the case in most real world graphs, see e.g. [22]), this sequence
of numbers would rapidly fall. The following theorem will
show that in this latter case, the total sample complexity of
the interactive SC-AdPaCT algorithm is significantly better
than the passive algorithm.

Theorem 3. Fix δ ∈ (0, 1). Algorithm 2 succeeds in recon-
structing the graph G with probability at least 1− δ and has
a total sample complexity given by the following expression

∑
`=1,2,4,...,d

(
p(`)

2

)(
r
2

) C`0 log

(
p2

δ
log

(
p2

δ

))
. (10)

Notice that this implies that Algorithm 2 is guaranteed
to never have a worse sample complexity than its passive
counterpart Algorithm 1. Moreover, the faster the sequence
{p(1), . . . , p(d)} drops to zero, the more drastic the improve-
ments provided by adaptivity. We will now briefly sketch a
proof of this result.
Proof: (Sketch) This result can be proved by adopting a
strategy similar to that of [12]. The main idea is that one
can bound the probability that the algorithm fails at step `,
when it has succeeded in all the preceding steps. Of course,
by definition, conditioning on the event that all the preceding
steps have succeeded implies that at step ` we will be left
with p(`) vertices in the set SETTLEDc. Furthermore, at step

`, we only need to guarantee partial correlation tests when
conditioned by sets of size `. Now, using the rCover on these
p(`) vertices, one can replicate the argument in the proof of
Theorem 2 to obtain a sample requirement given by(

p(`)

2

)(
r
2

) C`0 log

(
p2

δ
log

(
p2

δ

))
. (11)

Summing up these terms yields the desired guarantee on the
sample complexity. �
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[1] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some
sets of random matrices,” Sbornik: Mathematics, vol. 1, no. 4, pp. 457–
483, 1967.

[2] I. M. Johnstone, “On the distribution of the largest eigenvalue in
principal components analysis,” Annals of statistics, pp. 295–327, 2001.

[3] P. Ravikumar, M. J. Wainwright, and J. D. Lafferty, “High-dimensional
ising model selection using `1-regularized logistic regression,” The
Annals of Statistics, vol. 38, no. 3, pp. 1287–1319, 2010.

[4] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-
dimensional covariance estimation by minimizing `1-penalized log-
determinant divergence,” Electronic Journal of Statistics, vol. 5, pp. 935–
980, 2011.

[5] A. Anandkumar, V. Y. Tan, F. Huang, A. S. Willsky, et al., “High-
dimensional structure estimation in ising models: Local separation
criterion,” The Annals of Statistics, vol. 40, no. 3, pp. 1346–1375, 2012.

[6] A. Anandkumar, V. Y. Tan, F. Huang, and A. S. Willsky, “High-
dimensional gaussian graphical model selection: Walk summability and
local separation criterion,” The Journal of Machine Learning Research,
vol. 13, no. 1, pp. 2293–2337, 2012.

[7] C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo
two-photon calcium imaging of neuronal networks,” Proceedings of the
National Academy of Sciences, vol. 100, no. 12, pp. 7319–7324, 2003.

[8] J. Elson and D. Estrin, Time synchronization for wireless sensor net-
works. IEEE, 2001.

[9] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan,
“Causal protein-signaling networks derived from multiparameter single-
cell data,” Science, vol. 308, no. 5721, pp. 523–529, 2005.

[10] S. Keshri, E. Pnevmatikakis, A. Pakman, B. Shababo, and L. Paninski,
“A shotgun sampling solution for the common input problem in neural
connectivity inference,” arXiv preprint arXiv:1309.3724, 2013.

[11] S. Turaga, L. Buesing, A. M. Packer, H. Dalgleish, N. Pettit, M. Hausser,
and J. Macke, “Inferring neural population dynamics from multiple
partial recordings of the same neural circuit,” in Advances in Neural
Information Processing Systems, pp. 539–547, 2013.

[12] G. Dasarathy, A. Singh, M.-F. Balcan, and J. H. Park, “Active learning
algorithms for graphical model selection,” in Artificial Intelligence and
Statistics, pp. 1356–1364, 2016.

[13] J. Scarlett and V. Cevher, “Lower bounds on active learning for graphical
model selection,” arXiv preprint arXiv:1607.02413, 2016.

[14] S. L. Lauritzen, Graphical models. Oxford University Press, 1996.
[15] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and

search, vol. 81. MIT press, 2000.
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