
Active Learning Algorithms for Graphical Model Selection

Gautam Dasarathy†, Aarti Singh†, Maria F. Balcan†,∗, and Jong H. Park∗

†Machine Learning Department
∗Computer Science Department

Carnegie Mellon University

Abstract

The problem of learning the structure of a
high dimensional graphical model from data
has received considerable attention in recent
years. In many applications such as sensor
networks and proteomics it is often expen-
sive to obtain samples from all the variables
involved simultaneously. For instance, this
might involve the synchronization of a large
number of sensors or the tagging of a large
number of proteins. To address this impor-
tant issue, we initiate the study of a novel
graphical model selection problem, where the
goal is to optimize the total number of scalar
samples obtained by allowing the collection
of samples from only subsets of the variables.
We propose a general paradigm for graphi-
cal model selection where feedback is used
to guide the sampling to high degree ver-
tices, while obtaining only few samples from
the ones with the low degrees. We instan-
tiate this framework with two specific active
learning algorithms, one of which makes mild
assumptions but is computationally expen-
sive, while the other is computationally more
efficient but requires stronger (nevertheless
standard) assumptions. Whereas the sam-
ple complexity of passive algorithms is typi-
cally a function of the maximum degree of the
graph, we show that the sample complexity
of our algorithms is provably smaller and that
it depends on a novel local complexity mea-
sure that is akin to the average degree of the
graph. We finally demonstrate the efficacy of
our framework via simulations.

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

1 INTRODUCTION
Probabilistic graphical models provide a powerful for-
malism for expressing the relationships among a large
family of random variables. They are finding appli-
cations in increasingly complex scenarios from com-
puter vision and natural language processing to com-
putational biology and statistical physics. One impor-
tant problem associated with graphical models is that
of learning the structure of dependencies between the
variables described by such a model from data. This is
useful as it not only allows a succinct representation of
a potentially complex multivariate distribution, but it
might in fact reveal fundamental relationships among
the underlying variables. Unfortunately, the problem
of learning the structure of graphical models is known
to be hard in the high dimensional setting (where the
number of observations is typically smaller than the
total number of variables) since many natural suffi-
cient statistics such as the sample covariance matrix
are poorly behaved (see e.g., [1,2]). An exciting line of
work has explored many conditions under which this
problem becomes tractable (e.g., [3, 4, 5, 6]). Various
authors have discovered that by constraining both the
structure of the graph and the parameters of the prob-
abilistic model, there are interesting situations where
given O (log p) samples from the underlying distribu-
tion, one can learn the structure and sometimes the
parameters of the underlying graphical model.

In this paper, we will look at this problem in a differ-
ent light. In a wide variety of situations, it might be
costly to obtain many samples across all the variables
in the underlying system. For instance, in a sensor
network, obtaining a sample across all the sensors is
equivalent to obtaining a synchronized measurement
from all the sensors. Similarly in many other appli-
cations in neuroscience [7, 8, 9] and proteomics [10], it
might be much easier to obtain (marginalized) sam-
ples from small subsets of variables as opposed to full
snapshots.

We propose to handle this problem by what we call
active marginalization. That is, we present a general

Active Graphical Model Selection

paradigm for “activizing” graphical model structure
learning algorithms. In the spirit of active learning,
the algorithms we propose decide which vertices to
marginalize out (and therefore which vertices to sam-
ple further from) based on the samples previously ob-
tained. This general framework is laid out in Algo-
rithm 1, which may be considered a meta algorithm
that can be used to make any vertex based graph struc-
ture learning algorithm active. The algorithm princi-
pally uses two subroutines, one which selects candidate
neighborhoods given a vertex and the other one which
verifies if this candidate is a good one. We then instan-
tiate this in two different ways for structure learning of
Gaussian graphical models. Algorithm 2, which we call
AdPaCT (for Adaptive Partial Correlation Testing)
is an exhaustive search based algorithm that shows
improved sample complexity over passive algorithms.
However, like other algorithms based on exhaustive
search, the computational complexity of this algorithm
is often prohibitive. We then propose Algorithm 3,
which we call AMPL (for Adaptive Marginalization
based Parallel Lasso). Algorithm 3 performs the neigh-
borhood selection far more efficiently using the Lasso
(as in the seminal work of [11]). At the cost of more
restrictive, but standard assumptions, this gives us a
much more computationally efficient algorithm whose
total sample complexity is similar to that of Algo-
rithm 2, and therefore significantly better than its pas-
sive counterparts.

While the sample complexity, i.e., the total number
of samples needed for exact structure recovery with
high probability, for typical passive graph learning
algorithms scale as a function of the maximum de-
gree dmax of the graph, the sample complexity of
the algorithms we propose scale as a function of a
more local property of the graph. For instance, in
the Gaussian setting, the neighborhood selection algo-
rithm of [11] is guaranteed to reconstruct the graph if
the number of (scalar) measurements it obtains scales
as O(dmaxp log p) (i.e., O(dmax log p) samples each in
p dimensions). On the other hand, AdPaCT (Algo-
rithm 2) and AMPL(Algorithm 3) are guaranteed to
work with O(d̄maxp log p) samples, where d̄max is the
average maximum degree across all the neighborhoods
in the graph. We will define this quantity formally in
Section 2 and as we shall see at the end of Section 2,
d̄max can be significantly smaller than dmax.

2 PROBLEM STATEMENT

Let G = ([p], E) denote an undirected graph on the
vertex set [p] = {1, 2, . . . , p} with edge set E ⊆

(
p
2

)
. To

each vertex of this graph, we associate the components

of a 0−mean Gaussian1 random vector X ∈ Rp with
covariance matrix Σ ∈ Rp×p. The density of X is then
given by

fX(x1, . . . xp) =
1√

(2π)p |K|
exp

{
−1

2
xTKx

}
, (1)

where K = Σ−1 is the p−dimensional inverse covari-
ance (concentration) matrix. We will abbreviate this
density as N (0,Σ) in the sequel.

X is said to be Markov with respect to the graph G
if for any pair of vertices i and j, {i, j} /∈ E implies
that Xi ⊥⊥ Xj | X[p]\{i,j}. By the Hammersley-Clifford
theorem [12], we know that for all {i, j} /∈ E, Kij = 0.

In this paper, we study the problem of recovering the
structure of the graph G given samples from the dis-
tribution fX , that is, we would like to construct an
estimate Ê of the edge set of the underlying graph. As
mentioned in Section 1, we are interested in the setting
where our estimators are allowed to actively marginal-
ize the components of X and only observe samples
from the desired components of the random vector X.
More formally, operating in L stages, the estimator or
algorithm produces a sequence {(Sk, nk)}k∈[L], where

Sk ⊆ [p] and nk ∈ N. For each k ∈ [L], the algo-
rithm receives nk samples of the marginalized random
vector XSk

∈ R|Sk|. Notice that XSk
is distributed

according to N (0,Σ(Sk)), where Σ(Sk) denotes the
sub-block of the Σ corresponding to the indices in Sk.
The algorithm is also allowed to be adaptive in that
the choice of (Sk, nk) is allowed to depend on all the
previous samples obtained. Notice that the “passive”
algorithms (e.g., [11], [13], [4]) can be thought of as
operating in a single stage with S1 = [p].

We will now define a natural metric for evaluating the
performance of a graphical model selection algorithm
that both allows us to compare the algorithms pro-
posed here with their passive counterparts, and reflects
the penalty for obtaining samples from large subsets
of variables. Towards this end, first observe that the
total number of scalar samples obtained by an algo-
rithm as defined in the previous paragraph is given by∑L
k=1 |Sk|nk. Then, we may define the following.

Definition 1 (Total Sample Complexity). Fix δ ∈
(0, 1). Suppose that an algorithm returns an estimate

Ên given a budget of n total scalar samples. We will
say that its total sample complexity at confidence level

δ is n0 if for all n ≥ n0, P
[
Ên 6= E

]
≤ 1− δ.

Our primary objective will be to produce active
marginalization algorithms and demonstrate sufficient

1Our general framework applies much more broadly.
We assume Gaussian distributions for ease of presentation.

Dasarathy, Singh, Balcan, Park

conditions on their total sample complexity (at some
given level δ). These sufficient conditions are ex-
pressed as a function of the graph size p, the mag-
nitudes of the entries in the covariance matrix Σ, and
an interesting structural property of the graph. To
define this, we require a few more definitions. For
a vertex i ∈ [p], we will define its neighborhood
NG(i) , {j ∈ [p] : {i, j} ∈ E} and the closure of its
neighborhood NG(i) , NG(i) ∪ {i}. The size of
the set N(i) will be referred to as the degree d(i)
of this vertex2 and we define the maximum degree
dmax , maxi∈[p] d(i). In addition to these standard
definitions, we also define the local maximum degree of
a vertex as dimax , maxj∈N(i) d(j), that is, the maxi-
mum degree in i’s closed neighborhood. We also define
the following quantity

d̄max ,
1

p

p∑
i=1

dimax, (2)

which is the average of the local maximum degrees. As
we will see in the sequel, d̄max, which is a more local
notion of the complexity of the graph structure, will
play a central role in the statement of our results con-
cerning the total sample complexity of active learning
algorithms for graphical model selection.

First, we observe that in the passive setting, the to-
tal sample complexity (TSC) at some (constant) con-
fidence level δ is typically shown to be O(dmaxp log p).
For instance, using the results of [14], we can deduce
that the Lasso based neighborhood selection method of
[11] has a TSC which is no more than O(dmaxp log p).
Similarly, the PC algorithm [15], which is a smart ex-
haustive search algorithm, has a TSC that scales like
O(dmaxp log p) (see [13]).

On the other hand, in Sections 4 and 5 we will
demonstrate algorithms whose total sample complex-
ity (TSC) is bounded from above by O(d̄maxp log p).
By definition, d̄max ≤ dmax, and it is not hard to see
that d̄max can be significantly smaller than dmax when
the graph has a heterogenous degree sequence, which is
quite typical in many practical applications. Therefore
the total sample complexity of our algorithms scales
at a much better rate than their passive counterparts,
which also results in a significant practical advantage
as shown by our preliminary simulation study in Sec-
tion 6.

In the wake of the significant progress made in the
high-dimensional statistics literature, we can reason
about these results intuitively. To discover the neigh-
borhood of a vertex i ∈ [p], it should suffice to sample
i and (at least) its neighbors O(di log p). This implies
that the neighbor of i with maximum degree in N̄(i)

2We will suppress the dependence on G when it is clear
from the context

will force i to be sampled O(dimax log p) times. There-
fore, a total of O(d̄maxp log p) samples should suffice, if
the algorithm is able to focus its samples on the right
subsets of vertices. We demonstrate in Sections 4 and 5
exactly how this can be achieved. It is also curious to
note that d̄max appears as the natural notion of local
complexity of the graph rather than, say, the average
degree. Understanding whether this quantity is fun-
damental to active learning of graphical models, via
a minimax lower bound, for instance, is an extremely
interesting avenue for future work.

Formal lower bound arguments for passive algorithms
for recovering the structure of Gaussian graphical
models exist in [16], which establishes that for the class
of graphs with maximum degree dmax, if the small-
est partial correlation coefficient between any pair of
nodes conditioned on any subset of nodes is bounded
from below by a constant, then the passive algorithms
require Ω(dmaxp log p) scalar observations. The class
of graphs with average maximum degree d̄max is a
subset of the class of graphs with maximum degree
dmax, implying that the lower bound may not apply
to the former. However, a careful investigation of the
lower bound construction in [16] reveals that the lower
bound is based on hardest examples from the class of
graphs with a single clique of size dmax and all other
nodes disconnected, for which d̄max = d2

max/p ≤ dmax.
This establishes that, for the class of graphs whose
dmax and d̄max are such that d̄max ≤ d2

max/p, all passive
algorithms are much worse than the active algorithms
proposed in this paper.

d̄max vs. dmax. As mentioned earlier, the total sample
complexity of our algorithms scale like O(d̄maxp log p)
as opposed to the typical O(dmaxp log p) scaling of
passive algorithms. By definition, we can see that
d̄max ≤ dmax. There are many situations where d̄max

can be significantly smaller than dmax, potentially al-
lowing the active algorithms we propose to yield steep
savings in terms of the total sample complexity by run-
ning the active algorithm. As is often the case in real-
world graphs, if the degree distribution is non-uniform,
it is likely the case that d̄max is significantly smaller
than dmax. For instance, consider a graph on p vertices
where there are Θ(p) low (say Θ(1)) degree vertices,
and there are very few (say Θ(1)) vertices with degree
d. For such a graph, observe that d̄max scales like d2/p,
while dmax scales like d.

Another interesting case is that of graphs with small
correlation dimension [17], which can be thought of
as a global version of the doubling dimension (see,
e.g., [18] for more on doubling dimension). κ is said
to be the correlation dimension of G = ([p], E) if
κ is the smallest constant such that for all r ∈ [p]:∑
i∈[p] |B(i, 2r)| ≤ 2κ

∑
i∈[p] |B(i, r)|, where B(i, r) is

Active Graphical Model Selection

the set of all vertices that are at most r away (in short-
est path distance) from i. Such graphs are of interest
since they, like graphs with small doubling dimension,
are amenable to more efficient graph processing algo-
rithms (see [17] and references there in). Suppose a
graph has a correlation dimension of κ, then it is not
hard to see that d̄max ≤ 2κ

∑
i di/p, i.e., d̄max is con-

trolled by the average degree of the graph, which can
be significantly smaller than dmax.

3 A GENERAL FRAMEWORK

In this section, we will first describe our general frame-
work for building an active algorithm for graphical
model selection; this is described in Algorithm 1. We
note here that the ideas and results here are not pred-
icated upon the assumption that X is Gaussian.

Algorithm 1 accepts a natural number B which is a
budget for the total number of scalar samples allowed.
In our theoretical analysis, we will identify a sufficient
condition for the budget in terms of natural parame-
ters of the graphs we wish to learn. Algorithm 1 also
accepts “sample complexity functions” g, f : N → N.
Finally, the algorithm depends on two subroutines:
nbdSelect() and nbdVerify(). The former subrou-
tine takes as input (the index of) a vertex i, a candi-
date neighborhood size `, and samples from a subset
S of the variables. It then return a subset of S of size
no more than ` as its estimate N̂(i) of the neighbor-
hood of i. nbdVerify() accepts a vertex i, a candidate

neighborhood N̂(i), and samples from the variables in

settledc = [p]\settled. It then checks if N̂(i) is in-
deed a potential neighborhood of i. We will refer to g()
and h() as the sample complexity functions of the sub-
routines nbdSelect and nbdVerify respectively. At
this point, we will let these subroutines and their sam-
ple complexity functions remain abstract and focus on
the structural details of our active graphical model se-
lection framework. Sections 4 and 5 will demonstrate
two explicit instantiations of this framework when X is
Gaussian, and the application to more general distri-
butions would simply involve establishing appropriate
instantiations of nbdSelect(), nbdVerify(), g(), and
h().

We will now describe Algorithm 1. We start with an
empty graph on [p], i.e., N̂(i) = ∅ for all i ∈ [p]. And
initialize the counter ` to 1, and the variable nSamples
to 0. We also initialize the sets nbdFound, settled
to ∅. As the names suggest, nbdFound will be used
to keep track of the vertices whose neighborhood esti-
mates the algorithm is confident about and settled
keeps track of the vertices that no longer need to be
sampled from. Notice that the faster settled is pop-
ulated, the better the performance is of Algorithm 1 in
terms of the total sample complexity, since in succes-

sive stages only the vertices in settledc are sampled.
The algorithm then loops over ` (by doubling it) until
one of the following holds: ` > 2p, nbdFound = [p] or
nSamples exceeds the budget. At each iteration, the
algorithm obtains g(`) + h(`) new samples from vari-
ables in the set settledc and stores these in S1 and
S2 as in Steps 3 and 4. Next, in Steps 6-11, for each
vertex i /∈ settled the algorithm uses the subrou-
tine nbdSelect() to estimate a neighborhood of i of
size at most `. And, then if this neighborhood passes
the check of the subroutine nbdVerify, the algorithm
adds i to the set nbdFound. Finally, in Steps 12 - 15,
the set settled gets updated. Any i in nbdFound
whose entire estimated neighborhood is in nbdFound
gets enrolled in settled and does not get sampled
henceforth. That is, the algorithm “settles” a vertex
i ∈ [p] if it is both confident about the vertex’s neigh-
borhood and about the neighborhood of i’s neighbors.
It is this step that gives our algorithm its improved
total sample complexity.

We are now ready to state the following result that
characterizes the performance of Algorithm 1. We will
postpone the proof, which formalizes the intuition of
the above marginalization argument, to the supple-
mentary material.

Theorem 1. Fix δ ∈ (0, 1). For each ` ≤ dmax, as-
sume that the subroutines nbdSelect and nbdVerify
satisfy:

(C1) For any vertex i ∈ [p] and subset F ⊆ [p] that
are such that |N(i)| = di ≤ ` and N(i) ⊆ F ,
the following holds. Given g(`) samples from

XF , nbdSelect(i, `,
{
X

(j)
F

}
j∈S1

) returns the true

neighborhood of i with probability greater than
1− δ/2pdmax.

(C2) For any vertex i ∈ [p] and subsets F,H ⊆ [p]
that are such that |N(i)| = di ≤ `, N(i) ⊆ F ,
and H ⊆ F , the following holds. Given h(|H|)
samples from XF , nbdVerify (i,H,

{
X

(j)
F

}
) re-

turns true if and only if N(i) ⊆ H with probabil-
ity greater than 1− δ/2pdmax.

Then, with probability no less than 1 − δ, Algo-
rithm 1 returns the correct graph. Furthermore, it
suffices if B ≥

∑
i∈[p]

∑
0≤k≤dlog2 d

i
maxe

g(2k) + h(2k)).
That is, Algorithm 1 has a total sample complexity
of
∑
i∈[p]

∑
0≤k≤dlog2 d

i
maxe

g(2k) + h(2k) at confidence
level 1− δ.

Theorem 1 tells us that if the subroutines nbdSe-
lect (resp. nbdVerify) satisfies condition (C1) (resp.
(C2)) with probability exceeding 1 − δ/2pdmax for a
fixed ` with g(`) (resp. h(`)) samples, then Algo-
rithm 1 has a TSC of

∑
i∈[p]

∑
k≤dlog2 d

i
maxe

g(2k) +

Dasarathy, Singh, Balcan, Park

Algorithm 1 Active Neighborhood Selection

Require: budget B ∈ N, sample complexity functions g(), h(), subroutines nbdSelect, nbdVerify.

1: Set ` = 1, nSamples = 0, and initialize N̂(i), ∀i ∈ [p], nbdFound, settled, S1, S2 to ∅ (the empty set).

/∗ Obtain new samples from settledc ∗/

2: repeat

3: Obtain g(`) independent samples X
(j)
settledc ,j = 1, . . . , g(`); add to S1

4: Obtain h(`) independent samples X
(j)
settledc , j = 1, . . . , h(`); add to S2

5: Increment nSamples by (p− |settled|) × (g(`) + h(`)).

/∗ Generate and verify candidate neighborhoods ∗/

6: for i ∈ nbdFoundc do
7: N̂(i) = nbdSelect(i, `, {X(j)

settledc}j∈S1
) /∗ |N̂(i)| is at most ` ∗/

8: if (nbdVerify(i, N̂(i), {X(j)
settledc}j∈S2

) = true) then
9: nbdFound = nbdFound ∪{i}

10: end if
11: end for

/∗ Settle vertices ∗/

12: for i ∈ nbdFound do
13: if N̂(i) ⊆ nbdFound then settled = settled ∪{i}
14: end if
15: end for
16: Set ` = 2× `, S1, S2 = ∅.
17: until ` ≥ 2p or nbdFound = [p] or nSamples > B

18: return Graph Ĝ such that {i, j} ∈ Ĝ⇔ i ∈ N̂(j) or j ∈ N̂(i)

h(2k) at a confidence level 1 − δ. In what follows,
we will show two specializations of Algorithm 1. Our
strategy to establish the TSC of these algorithms will
be to first estimate the probability that nbdSelect
and nbdFound fail to satisfy (C1) and (C2). This
will suggest a choice for the functions g() and h(),
which can then be used to identify the total sample
complexity.

4 The AdPaCT Algorithm

We call our first instantiation of Algorithm 1, the Ad-
PaCT algorithm, which stands for Adaptive Partial
Correlation Testing. In this section, for the sake of
simplicity and concreteness, we will assume that X
follows the 0 mean multivariate normal distribution
with a covariance matrix Σ ∈ Rp×p.

First, we observe that since X ∼ N (0,Σ), the par-
tial correlation coefficient contains all the conditional
independence information of the distribution. In par-
ticular, for a pair of vertices i, j ∈ [p], and for a subset
S ⊆ [p], the partial correlation coefficient ρij|S = 0
if and only if Xi ⊥⊥ Xj | XS (except for a patholog-
ical, measure 0 set of covariance matrices). As the
name suggests, the AdPaCT algorithm uses estimates
of these partial correlation coefficients in order to learn
the graph represented by Σ. Recall that the partial

correlation coefficient ρij|S satisfies the following re-
cursive relationship which holds for any k ∈ S:

ρi,j|S =
ρi,j|S\{k} − ρi,k|S\{k}ρj,k|S\{k}√(

1− ρ2
i,k|S\{k}

)(
1− ρ2

j,k|S\{k}

) . (3)

In order to compute empirical estimates of these quan-
tities one can begin with the natural empirical esti-
mates of the correlation coefficients and substitute re-
cursively in the above formula, or equivalently, one
might invert the relevant sub-matrices of the empiri-
cal covariance matrix of the observed data. In what
follows, we will write ρ̂ij|S to mean either of these es-
timates; our theoretical results hold for both.

We will now describe Algorithm 2. The framework
provided by Algorithm 1 will allow us to do this by
prescribing choices for the subroutines nbdSelect and
nbdVerify and the functions g() and h().

We choose the sample complexity functions g(`) =
dc` log pe and h(`) = 0. The nbdSelect subroutine
exhaustively searches over all subsets S ⊆ F (note
that F will be [p]\settled when nbdSelect is called
inside of Algorithm 1) of cardinality between `/2 + 1

and ` to find the smallest set Ŝ which is such that
maxj /∈Ŝ

∣∣∣ρ̂i,j|Ŝ∣∣∣ ≤ ξ. If such a set is not found, then

Active Graphical Model Selection

the subroutine returns the empty set.

Observe that nbdSelect on its own performs condi-
tional independence tests to ensure that it is returning
the right neighborhood. Therefore, nbdVerify simply
returns true unless S = ∅. It is worth observing here
that the passive counterpart of this algorithm is a nat-
ural algorithm for Gaussian graphical model selection
and indeed serves as the foundation for various algo-
rithms in literature like the CCT algorithm of [6] and
the PC algorithm (see e.g., [15]).

In order to theoretically characterize the performance
of Algorithm 2, we need the following assumptions.

(A1) The distribution of X is faithful to G.

(A2) For each i, j ∈ [p] and S ⊆ [p] \ {i, j},
∣∣ρi,j|S∣∣ ≤

M . And, for each i, j ∈ [p] and S ⊆ [p], if Xi 6⊥⊥ Xj |
XS , then

∣∣ρi,j|S∣∣ ≥ m.

Assumption (A1) is a standard assumption in the
graphical model selection literature and is violated
only on a set of measure 0 (see e.g., [15,19]). Assump-
tion (A2) has appeared in the literature (e.g., [13])
as a way of strengthening the faithfulness assumption.
While the upper bound in assumption (A2) is a mild
regularity condition, the lower bound of (A2) may be
hard to verify in practice. However, under certain
parametric and structural conditions, one can obtain
a handle on m. For example, the authors in [6] show
that if the underlying graph has small local separators
and if the concentration matrix is walk-summable, then
m in (A2) can be replaced essentially by the smallest
non-zero entry of the concentration matrix.

We can now state the following theorem about the
performance of the AdPaCT algorithm.

Theorem 2. Fix δ ∈ (0, 1) and suppose that as-
sumptions (A1) and (A2) hold. Then, there exists a
constant c = c(m,M, δ) such that if we set g(`) =
dc` log pe and ξ = m/2, then with probability no less
than 1− δ, the following hold:

1. The AdPaCT algorithm successfully recovers the
graph G.

2. The computational complexity of the AdPaCT al-
gorithm is no worse than O(pdmax+2)

This implies that the total sample complexity of the
AdPaCT algorithm at confidence level 1−δ is bounded
by 2cd̄maxp log p.

To prove this theorem, as mentioned earlier, we show
that the choice for the subroutines nbdSelect and
nbdVerify satisfy the conditions (C1) and (C2) of
Theorem 1 with high probability. We bound the event
that nbdSelect fails in some iteration ` in terms of
concentration inequalities for the partial correlation

coefficient. This gives us a corresponding choice of
g(`) that determines the TSC of the AdPaCT algo-
rithm. Please refer to the supplementary material for
the details of the proof.

It is clear that this procedure is advantageous over pas-
sive algorithms in situations where dmax is large com-
pared to d̄max. Unfortunately, in these settings which
lend themselves to improved sample complexity, the
computational complexity of the AdPaCT algorithm
could be prohibitively large. In the next section, we
will propose a different instantiation of Algorithm 1
based on the Lasso [20] which achieves sample com-
plexity savings similar to Algorithm 2 whilst also en-
joying vastly lower computational complexity.

5 The AMPL algorithm

In this section, we will discuss a computationally ef-
ficient active marginalization algorithm for learning
graphs. As alluded to in Section 4, this algorithm uses
Lasso as an efficient means for neighborhood selection
and hence can be thought of as an active version of the
seminal work of [11]. We call this algorithm AMPL for
Adaptive Marginalization based Parallel Lasso.

As in Section 4, we will describe the algorithm by pre-
scribing choices for the subroutines nbdSelect and
nbdVerify and the functions g() and h().

Algorithm 2 AdPaCT: Adaptive Partial Correlation
Testing

Require: Budget B ∈ N, a constant c > 0, and
threshold ξ > 0.

Sample Complexity Functions
1: g(`) = dc` log pe, h(`) = 0.

nbdSelect(i, `, {X(j)
F }j∈S1

)

2: for k = `/2 + 1, `/2 + 2, . . . , ` do
3: S =

{
S ⊆ F : |S| = k,maxj /∈S

∣∣ρ̂i,j|S∣∣ ≤ ξ}
4: if S = ∅ then continue (i.e., go to Step 7)

5: else return Ŝ = arg minS∈S maxj /∈S
∣∣ρ̂i,j|S∣∣

6: end if
7: end for
8: return ∅

nbdVerify(i, S, {X(j)
F }j∈S2

)

9: if S 6= ∅ then return true
10: else return false
11: end if

We choose the sample complexity functions to be
g(`) = h(`) = c` log p. nbdSelect operates as fol-
lows. Let y denote the vector of samples correspond-
ing to the random variable Xi and let X denote the
corresponding matrix of samples from the the random

Dasarathy, Singh, Balcan, Park

variables XF\{i}. The subroutine solves the following
optimization program

Algorithm 3 AMPL: Adaptive Marginalization based
Parallel Lasso

Require: Budget B ∈ N, a constant c > 0, and
threshold ξ > 0.

Sample Complexity Functions
1: g(`) = h(`) = d`c log pe.

nbdSelect(i, `, {X(j)
F }j∈S1

)

2: Let y ∈ Rd`c log pe be the vector of samples from Xi

in S1.
3: Let X ∈ R(d`c log pe)×(p−|settled|−1) be

the corresponding matrix of samples from
X[p]\{settled∪{i}}.

4: β̂ ← Lasso(y,X)

5: if
∣∣∣supp(β̂)

∣∣∣ > ` then return top ` coordinates

of
∣∣∣β̂∣∣∣

6: else return β̂
7: end if

nbdVerify(i, S, {X(j)
F }j∈S2

)

8: if for each j ∈ [p] \F ∪S ∪ {i},
∣∣ρ̂i,j|S∣∣ ≤ ξ then

return true
9: else return false

10: end if

β̂ = arg min
β∈R|F |−1

1

2ni,`
‖y −Xβ‖22 + λ`,i ‖β‖1 , (4)

where the choice of λ`,i is stated in Theorem 3 and
ni,` is the number of samples (i.e., dimension of y).

If the size of the support of β̂ is greater than `,
then the algorithm returns the ` largest coordinates

of
∣∣∣β̂∣∣∣, else the algorithm returns the support of β̂.

nbdVerify returns true if
∣∣∣ρ̂i,j|N̂(i)

∣∣∣ ≤ ξ for every

j ∈ [p] \ (settled ∪ N̂(i) ∪ {i}), else it returns false.

Before we can state our theoretical results on the per-
formance of the AMPL algorithm, we need to make
some assumptions. For each i ∈ [p], let Σ\i denote
the covariance matrix with the i−the row and column
removed and set Si , N(i). We will assume the fol-
lowing conditions.

(A3) There exists a constant γ ∈ (0, 1] such that for

all i ∈ [p], Σ̃i satisfies the following:∣∣∣∣∣∣∣∣∣∣∣∣Σ̃iSc
iSi

(
Σ̃iSiSi

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ 1− γ

(A4) There exist constants 0 < Cmin ≤ Cmax < ∞

such that for all i ∈ [p], the covariance matrix Σ̃i also
satisfies the following:

Cmin ≤ Λmin

(
Σ̃iSiSi

)
≤ Λmax

(
Σ̃iSiSi

)
≤ Cmax

Assumption (A3) is a kind of incoherence assumption
often dubbed the irrepresentability condition; similar
assumptions have appeared in the literature for graph-
ical model selection [3,4,11] and in the analysis of the
Lasso [21]. Intuitively speaking, this restricts the influ-
ence that non-edge pairs of vertices have on the pairs
of vertices that are edges.

Assumption (A4) is a commonly imposed regularity
condition on the covariance matrix.

We can now state the following theorem that charac-
terizes the performance of the AMPL algorithm.

Theorem 3. Fix δ > 0. Suppose that assumptions
(A1)-(A4) hold. There exists constants C1, C2, C3

which depend on Σ,m, δ such that if we set c = C1

(i.e., g(`) = c` log p), ξ = m/2, λ` =
√

2C2‖Σ‖∞
C1γ2 , and

budget B = 2cd̄maxp log p, then with probability at least
1− δ, the following hold

1. the AMPL algorithm successfully recovers the graph
G,

2. the computational complexity is bounded from above
by dmaxpC, where C is the computational cost of solving
a single instance of Lasso,

provided m ≥
(
Cmin

Cmax
+ Cmax

Cmin
+ 2
)
×

1
4 mini|Σii|

[
C3

√
2C1‖Σ‖∞
C2γ2 maxi

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̃iN(i),N(i)

)−1/2
∣∣∣∣∣∣∣∣∣∣∣∣2
∞

+

20
√
‖Σ‖∞
CminC2

]
.

Again, we prove this theorem by showing that our
choice for the subroutines nbdSelect and nbdVer-
ify satisfy the conditions (C1) and (C2). The proof
characterizing the behavior of nbdVerify is very sim-
ilar to the proof of Theorem 2. On the other hand, to
characterize the behavior of nbdSelect, one part of
our reasoning is similar to the argument in [14, Theo-
rem 3]. The rest of the proof follows from a strength-
ening of the argument in [14] for the case when the
degree is o(log p). We also needed to be cognizant of
the fact that our adaptive marginalization approach
results in samples in different stages having different
distributions. We refer the interested reader to the
supplementary material for the details.

6 SIMULATIONS

We will now describe some preliminary experimen-
tal results. In particular, we will focus on the com-
putationally efficient AMPL algorithm (Algorithm 3)

Active Graphical Model Selection

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

20

40

60

80

100

Effective number of samples (Avg)

H
am

m
in

g
di

st
an

ce
 (a

vg
)

AMPL
MB

Single Clique

1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

160

180

200

Effective number of samples (Avg)

H
am

m
in

g
di

st
an

ce
 (a

vg
)

AMPL
MB

Multiple Cliques

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

Effective number of samples (Avg)

H
am

m
in

g
di

st
an

ce
 (a

vg
)

AMPL
MB

Power Law

Figure 1: Plot of Effective number of Samples (total number of scalars/p) -v- Hamming Error

Table 1: Comparison of ESC (10 trials)

Graph ESC (0.9) ESC(1)
AMPL MB AMPL MB

Single Clique 1202.1 3361.8 1202 3361.9
Mult. Cliques 1154.3 2943.8 2649.5 6216.1
Power Law 1280.2 2300.4 4212.8 8004.7

and compare it to its natural passive counterpart, the
neighborhood regression algorithm from [11] (hence-
forth, MB). We implemented each algorithm using the
Glmnet package [22], where we tuned the parameters
so that each algorithm achieved the best model selec-
tion performance against the true model.

We evaluated these algorithms on the following graphs:

(a) Single Clique : a graph on p = 60 vertices
composed of a clique on 12 vertices and a chain graph
connecting the rest. Observe that here dmax = 11 and
d̄max = 3.8.

(b) Multiple Cliques: a graph on p = 100 ver-
tices with 4 (disconnected) cliques of sizes 5, 8, 10, 11
respectively; the rest of the graph is again connected
with a chain. Here, dmax = 10 and d̄max = 4.08

(c) Power Law: a (random) power law graph on p =
60 vertices generated according to the Barabási-Albert
model with a randomly generate sparse seed graph on
5 vertices. These graphs are such that the number of
vertices of degree x in the graph behaves like a∗x−b for
constants a, b > 0. See [23] for more on these graphs.
For a typical graph we generated, we onserved that
dmax = 13 and d̄max = 3.68.

In Table 1, we report the comparison between AMPL
and MB. To run AMPL, we choose the constant c (cf.
Section 5) and allow the algorithm to run until it re-
ports all vertices are settled. We then record (i) the
total number of scalar samples consumed by the algo-
rithm divided by p; we call this the effective sample
complexity, and (ii) its model selection performance

in terms of the hamming distance between the esti-
mated and the true adjacency matrices. We then ran
MB for various sample sizes and recorded its hamming
error performance. In Table 1, we report two numbers
for each algorithm and each graph: (a) ESC(0.9): the
average (over 10 trials) number of effective samples re-
quired to get atleast 90% of the edges, and (b) ESC(1):
the average number of effective samples required to get
all the edges right. Notice that ESC(1)×p is the total
number of scalar samples consumed.

As we can see from Table 1, the AMPL algorithm
clearly outperforms the neighborhood regression algo-
rithm of Meinshausen and Buhlmann in the situations
where the degree distribution of the true graphs is non-
uniform.

We also compare the “average” hamming error per-
formance of these two algorithms in Figure 1. Since
the total sample complexity of the AMPL algorithm
is a random number, we adopt the following protocol
to generate these plots: We first choose a value for
the constant c (cf. Section 5) and allow AMPL to run
to completion. We then compute the effective num-
ber of samples by dividing the total number of scalars
by the size of the graph (p). These many independent
samples are then fed to MB and its hamming error per-
formance is recorded. For each value of c, we repeat
this 10 times and record the average effective number
of samples and the average hamming error for both
AMPL and MB. These results are shown in Figure 1.

Acknowledgements

A. S. was supported in part by NSF grants IIS-
1247658, CAREER IIS-1252412, and AFOSR YIP
FA9550-14-1-0285. M. F. B was supported in part
by grants NSF CCF-145117, NSF CCF-1422910, NSF
CCF-1535967, and a Sloan Fellowship.

Dasarathy, Singh, Balcan, Park

References

[1] V. A. Marčenko and L. A. Pastur, “Distribution
of eigenvalues for some sets of random matrices,”
Sbornik: Mathematics, vol. 1, no. 4, pp. 457–483,
1967.

[2] I. M. Johnstone, “On the distribution of the
largest eigenvalue in principal components analy-
sis,” Annals of statistics, pp. 295–327, 2001.

[3] P. Ravikumar, M. J. Wainwright, and J. D. Laf-
ferty, “High-dimensional ising model selection us-
ing 1-regularized logistic regression,” The Annals
of Statistics, vol. 38, no. 3, pp. 1287–1319, 2010.

[4] P. Ravikumar, M. J. Wainwright, G. Raskutti,
and B. Yu, “High-dimensional covariance estima-
tion by minimizing 1-penalized log-determinant
divergence,” Electronic Journal of Statistics,
vol. 5, pp. 935–980, 2011.

[5] A. Anandkumar, V. Y. Tan, F. Huang, A. S. Will-
sky, et al., “High-dimensional structure estima-
tion in ising models: Local separation criterion,”
The Annals of Statistics, vol. 40, no. 3, pp. 1346–
1375, 2012.

[6] A. Anandkumar, V. Y. Tan, F. Huang, and
A. S. Willsky, “High-dimensional gaussian graph-
ical model selection: Walk summability and lo-
cal separation criterion,” The Journal of Machine
Learning Research, vol. 13, no. 1, pp. 2293–2337,
2012.

[7] S. Keshri, E. Pnevmatikakis, A. Pakman,
B. Shababo, and L. Paninski, “A shotgun sam-
pling solution for the common input problem
in neural connectivity inference,” arXiv preprint
arXiv:1309.3724, 2013.

[8] S. Turaga, L. Buesing, A. M. Packer, H. Dalgleish,
N. Pettit, M. Hausser, and J. Macke, “Inferring
neural population dynamics from multiple par-
tial recordings of the same neural circuit,” in Ad-
vances in Neural Information Processing Systems,
pp. 539–547, 2013.

[9] W. E. Bishop and M. Y. Byron, “Deterministic
symmetric positive semidefinite matrix comple-
tion,” in Advances in Neural Information Process-
ing Systems, pp. 2762–2770, 2014.

[10] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger,
and G. P. Nolan, “Causal protein-signaling net-
works derived from multiparameter single-cell
data,” Science, vol. 308, no. 5721, pp. 523–529,
2005.

[11] N. Meinshausen and P. Bühlmann, “High-
dimensional graphs and variable selection with
the lasso,” The Annals of Statistics, pp. 1436–
1462, 2006.

[12] S. L. Lauritzen, Graphical models. Oxford Uni-
versity Press, 1996.

[13] M. Kalisch and P. Bühlmann, “Estimating high-
dimensional directed acyclic graphs with the pc-
algorithm,” The Journal of Machine Learning Re-
search, vol. 8, pp. 613–636, 2007.

[14] M. J. Wainwright, “Sharp thresholds for high-
dimensional and noisy sparsity recovery using-
constrained quadratic programming (lasso),” In-
formation Theory, IEEE Transactions on, vol. 55,
no. 5, pp. 2183–2202, 2009.

[15] P. Spirtes, C. N. Glymour, and R. Scheines, Cau-
sation, prediction, and search, vol. 81. MIT press,
2000.

[16] W. Wang, M. J. Wainwright, and K. Ramchan-
dran, “Information-theoretic bounds on model
selection for gaussian markov random fields,”
in Information Theory Proceedings (ISIT), 2010
IEEE International Symposium on, pp. 1373–
1377, IEEE, 2010.

[17] T.-H. H. Chan, Approximation algorithms for
bounded dimensional metric spaces. ProQuest,
2007.

[18] A. Slivkins, “Distance estimation and object lo-
cation via rings of neighbors,” Distributed Com-
puting, vol. 19, no. 4, pp. 313–333, 2007.

[19] J. Pearl, Causality: models, reasoning and infer-
ence, vol. 29. Cambridge Univ Press, 2000.

[20] R. Tibshirani, “Regression shrinkage and selec-
tion via the lasso,” Journal of the Royal Statistical
Society. Series B (Methodological), pp. 267–288,
1996.

[21] S. A. Van De Geer, P. Bühlmann, et al., “On
the conditions used to prove oracle results for
the lasso,” Electronic Journal of Statistics, vol. 3,
pp. 1360–1392, 2009.

[22] J. Qian, T. Hastie, J. Friedman, R. Tibshirani,
and N. Simon, “Glmnet for matlab (2013),”

[23] R. Albert and A.-L. Barabási, “Statistical me-
chanics of complex networks,” Reviews of modern
physics, vol. 74, no. 1, p. 47, 2002.

	INTRODUCTION
	PROBLEM STATEMENT
	A GENERAL FRAMEWORK
	The AdPaCT Algorithm
	The AMPL algorithm
	SIMULATIONS

