CSE 591: Theoretical Aspects of CPS

Timed automata

References:
Tabuada Ch 7.2, Cassandras & Lafortune Ch 5.6

Instructor: Georgios E. Fainekos

School of Computing, Informatics and Decision System Engineering
Arizona State University
fainekos at asu edu

http://www.public.asu.edu/~gfaineko
Example: Alarm 1

one clock: $d\xi/dt = 1$

s_0 with $\xi := 0$

s_1 with
- $\xi := 0$
- $\xi \geq 1$

s_2 with
- $\xi := 0$ when $0 < \xi < 1$

s_3 with $\xi < 1$
Example: Alarm 2

One clock: \(\frac{d\xi}{dt} = 1 \)

- \(s_0 \) to \(s_1 \): \(\xi := 0 \) msg
- \(s_1 \): \(\xi := 0 \) msg
- \(s_1 \) to \(s_2 \): \(\xi \geq 1 \) msg
- \(s_2 \) to \(s_3 \): \(0 < \xi < 1 \) msg
- \(s_3 \): alarm

\(\xi := 0 \)
Example: Scheduler

- **Sleep**
 - \(\xi_1 = 1, \xi_2 = 1 \)
 - \(0 \leq \xi_1 \leq 3 \)
 - \(\xi_1 := 0 \)
 - \(\xi_2 := 0 \)

- **Active**
 - \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - \(0 \leq \xi_1 \leq 2 \)
 - \(\text{awake: } \xi_1 := 3 \)
 - \(\text{expired: } \xi_1 := 0 \)

- **Starting**
 - \(0 \leq \xi_1 < 2 \)
 - \(\xi_1 := 0, \xi_2 := 0 \)

- **Execute**
 - \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - \(0 \leq \xi_1 \leq 2 \)
 - \(0 \leq \xi_2 \leq 1 \)
 - \(\text{finished: } 0 < \xi_2 < 1 \)

- **Error**
 - \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - \(2 \leq \xi_1 \)
 - \(\text{expired: } \xi_1 := 2 \)

Question

• Subset sum
 • Model the subset sum problem as a reachability problem for a timed automaton
 • We are given 4 positive integers \(K = \{k_1, k_2, k_3, k_4\} \) and a sum \(K_{\text{sum}} \)
 • Does \(\sum k_i = K_{\text{sum}} \)?
Review: Quotient System

Let $S = \{X, X_0, U, \rightarrow, Y, H\}$ be a system and Q be an equivalence relation on X where $(x, x') \in Q$ implies $H(x) = H(x')$. The quotient of S by Q - denoted $S_{/Q}$ - is the system $S_{/Q} = \{X_{/Q}, X_{/Q0}, U, \rightarrow_{/Q}, Y, H_{/Q}\}$, where

1. $X_{/Q} = X/Q$
2. $X_{/Q0} = \{x_{/Q} \in X_{/Q} \mid x_{/Q} \cap X_0 \neq \emptyset\}$
3. $(x_{/Q}, u, x'_{/Q}) \in \rightarrow_{/Q}$ if $\exists (x, u, x') \in \rightarrow$ with $x \in x_{/Q}$ and $x' \in x'_{/Q}$
4. $H_{/Q}(x_{/Q}) = H(x)$ for some $x \in x_{/Q}$

Theorem: Let $S = \{X, X_0, U, \rightarrow, Y, H\}$ be a system and Q be an equivalence relation on X where $(x, x') \in Q$ implies $H(x) = H(x')$. The relation

$\Gamma(\pi_Q) = \{(x, x_{/Q}) \in X \times X_{/Q} \mid x_{/Q} = \pi_Q(x)\}$

is a simulation relation from S to $S_{/Q}$.

$\Gamma(\pi_Q)$ is a bisimulation relation between S and $S_{/Q}$ iff Q is bisimulation between S and S.

Review: Bisimulation

- Def. Given S_a, S_b with $Y_a=Y_b$ we say that S_a is **bisimilar** to S_b, denoted $S_a \approx_s S_b$, if there exists a relation R satisfying:
 1. R is a simulation relation from S_a to S_b
 2. R^{-1} is a simulation relation from S_b to S_a

- Let S_a, S_b with $Y_a=Y_b$. A relation $R \subseteq X_a \times X_b$ is a **bisimulation relation** between S_a and S_b if
 1. $\forall x_{a0} \in X_{a0}. \exists x_{b0} \in X_{b0}. (x_{a0}, x_{b0}) \in R$
 2. $\forall x_{b0} \in X_{b0}. \exists x_{a0} \in X_{a0}. (x_{a0}, x_{b0}) \in R$
 3. $\forall (x_a, x_b) \in R. H_a(x_a)=H_b(x_b)$
 4. $\forall (x_a, x_b) \in R.$

 $x_a \xrightarrow{u_a} x'_a$ implies $x_b \xrightarrow{u_b} x'_b$ satisfying $(x'_a, x'_b) \in R$

 $x_b \xrightarrow{u_b} x'_b$ implies $x_a \xrightarrow{u_a} x'_a$ satisfying $(x'_a, x'_b) \in R$
Example: Scheduler

- **Sleep**
 - \(\xi_1 = 1, \xi_2 = 1 \)
 - \(0 \leq \xi_1 \leq 3 \)
 - \(\xi_1 := 0 \)
 - \(\xi_2 := 0 \)

- **Active**
 - \(\xi_1 = 1, \xi_2 = 1 \)
 - \(0 \leq \xi_1 \leq 2 \)
 - \(\xi_1 = 3 \)
 - \(\xi_1 := 0 \)

- **Starting**
 - \(0 \leq \xi_1 < 2 \)
 - \(\xi_2 := 0 \)

- **Error**
 - \(\xi_1 = 1, \xi_2 = 1 \)
 - \(2 \leq \xi_1 \)
 - \(\xi_1 = 2 \)

- **Execute**
 - \(\xi_1 = 1, \xi_2 = 1 \)
 - \(0 \leq \xi_1 \leq 2 \)
 - \(0 \leq \xi_2 \leq 1 \)
 - \(0 < \xi_2 < 1 \)

- **Awake**
 - \(\xi_1 := 0 \)

- **Expired**
 - \(\xi_1 = 2 \)
2D Continuous state space
Equivalence classes \mathbb{Q}
Equivalence classes Q
Equivalence classes Q
Equivalence classes Q′
Equivalence classes Q''
Equivalence classes Q'''
Example: Scheduler

- **Sleep**: \(\xi_1 = 1, \xi_2 = 1 \)
 - Conditions: \(0 \leq \xi_1 \leq 3 \)
 - Actions: \(\xi_1 := 0 \), \(\xi_2 := 0 \)

- **Active**: \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - Conditions: \(0 \leq \xi_1 \leq 2 \)
 - Transition: \(\xi_1 := 3 \)

- **Starting**: \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - Conditions: \(0 \leq \xi_1 < 2 \)
 - Actions: \(\xi_2 := 0 \)

- **Execute**: \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - Conditions: \(0 \leq \xi_1 \leq 2 \)
 - Conditions: \(0 \leq \xi_2 \leq 1 \)
 - Transition: \(\xi_2 := 0 \)
 - Transition: \(\xi_1 := 2 \)

- **Error**: \(\dot{\xi}_1 = 1, \dot{\xi}_2 = 1 \)
 - Conditions: \(2 \leq \xi_1 \)
 - Transition: \(\xi_1 := 2 \)

- **Awake**: \(\xi_1 := 0 \)
 - Conditions: \(\xi_1 = 3 \)

- **Expired**: \(\xi_1 := 2 \)
 - Conditions: \(\xi_1 = 2 \)

- **Finished**: \(\xi_1 := 2 \)
 - Conditions: \(0 < \xi_2 < 1 \)
System trajectories
System trajectories
Example: Alarm 2

What are the regions of interest?

one clock: $d\xi/dt = 1$

$\xi:=0$ to s_0

$\xi:=0$ to s_1

$0<\xi<1$ to s_2

$\xi:=0$ to s_3
Example: Alarm 2
Example: Alarm 2
Example: Alarm 2
Timed Automata in Practice

• UPPAAL (http://www.uppaal.com/)
 • Verification
 • Planning and Scheduling
 • Testing real time systems
 • Timed games
 • Probabilistic timed automata
 • Times tool (http://www.timestool.com/)
 • modeling,
 • schedulability analysis
 • synthesis of schedules and executable code
 • worst case reaction time (WCRT) analysis