Using S-TaLiRo on Industrial Size Automotive Models

Bardh Hoxha, Houssam Abbas, Georgios Fainekos
Arizona State University, Tempe, AZ, USA
{bhoxha, hyabbas, fainekos}@asu.edu

v1.0, 2014-03-31

Abstract

In Model Based Development (MBD) of embedded systems, it is often desirable to verify or falsify certain formal specifications. In some cases it is also desirable to find the range of specification parameters for which the specification does not hold on the system. We illustrate these methods on a challenge problem from the automotive industry on a high-fidelity, industrial scale engine model.

1 Introduction

Incidents such as [7] reinforce the need for design, verification, and validation methodologies for safety-critical systems. Due to the importance of the problem, we have investigated the testing of embedded and hybrid systems with respect to formal requirements in Metric Temporal Logic (MTL) [2]. MTL enables system engineers to express complex requirements. We use the robustness estimate, as presented in [6], to cast the falsification problem of MTL formulas as an optimization problem. The robustness of a trajectory with respect to an MTL specification is a quantitative evaluation, where negative values indicate that the trajectory does not satisfy the specification, and positive values indicate that the trajectory does satisfy the specification. The magnitude of the robustness value indicates how close the trajectory is to falsifying or satisfying the specification. The robust semantics can be computed with different algorithms and guarantees [5, 6].

We demonstrate our methods and framework with our Matlab toolbox S-TaLiRo [3] using a high-fidelity, industrial size engine model from the SimuQuest Enginuity Matlab/Simulink tool package.
2 Preliminaries

2.1 Falsification

Falsification is the process of finding a system trajectory, a counter example, for which the specification does not hold. S-TaLiRo searches for counterexamples to MTL properties for non-linear hybrid systems through global minimization of the robustness metric [6].

S-TaLiRo integrates robustness computation for trajectories of hybrid systems with stochastic optimization. The search returns the simulation trajectory with the smallest robustness value that was found. Trajectories with positive - but low - robustness values are closer in distance to falsifying trajectories, using a mathematically well-defined notion of distance between trajectories and temporal logic properties. Such trajectories provide valuable insight to the developer on why a given property fails, or to our search algorithms on how to refocus a search for a counter-example.

2.2 Parameter Estimation

In Model Based Development (MBD) of embedded systems, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. Namely, given a parametrized specification, we would like to automatically infer the ranges of parameters for which the property does not hold on the system. We consider parametric specifications in MTL. Using robust semantics for MTL, the parameter estimation problem can be converted into an optimization problem which can be solved by utilizing stochastic optimization methods. In [10], we demonstrate a method for solving this problem for specifications whose robustness function is monotonic with respect to the set of parameters. S-TaLiRo currently supports parameter estimation for parametric MTL formulas that contain one or more parameters. A parameter estimation method is also presented in [8].

Figure 1: Architecture of S-TaLiRo.
3 Experimental Results

We initially present results on a simplified powertrain model which was first published by Ford [4]. The question posed is whether there are constant operating conditions that can cause a shift from gear two to gear one and then back to gear two. That implies that the transition was not necessary in the first place. In [5], we demonstrated that S-TaLiRo [3] can successfully solve the challenge problem on a simplified powertrain model. The specification in natural language is stated as follows: Does a transition exist from gear two to gear one and back to gear two in less than τ seconds? This requirement is formalized with the following MTL specification

$$\phi = \Box((gear_2 \land Xgear_1) \rightarrow \Box_{[0,\tau]}\neg gear_2)$$

In [10], not only did we show that the specification could be falsified for $\tau = 2.5$ sec, but we also showed the the specification can be falsified with a τ parameter which is as low as $\tau = 0.4273$ sec. Due to the monotonicity of the robustness function with respect to the parameter, we demonstrated that the system is falsified for every $\tau \geq 0.4273$ sec using about 300 tests of the system.

In the following, we present our work with a high fidelity engine model from the SimuQuest Enginuity [9] Matlab/Simulink tool package. The goal is to illustrate the MTL falsification and parameter estimation methods.

The Enginuity tool package includes a library of modules for engine component blocks. It also includes pre-assembled models for standard engine configurations. In this work, we will use the Port Fuel Injected (PFI) spark ignition, 4 cylinder inline engine configuration. It models the effects of combustion from first physics principles on a cylinder-by-cylinder basis, while also including regression models for particularly complex physical phenomena. Simulink reports that this is a 56 state model. Note that this number represents only the visible states. It is possible that more states are present in the blackbox s-functions which are not accessible. This is a high dimensional non-linear system for which
reachability analysis is very difficult. It also includes lookup tables, non-linear components, and inputs that affect the switching guards. The model includes a tire-model, brake system model, and a drive train model (including final drive, torque converter and transmission). The model is based on a zero-dimensional modeling approach so that the model components can all be expressed in terms of ordinary differential equations.

The parametric MTL exploration of embedded systems was motivated by a challenge problem published by Ford in 2002 [4]. Here we show that we can apply our methods to industrial size and complex models.

We test this requirement on the SimuQuest Enginuity engine model. The inputs to the system are the throttle and break schedules, and the road grade, which represents the incline of the road. The throttle and break at each point in time can take any value between 0 to 100. The road grade at each point in time can take any value between -33.5 and 33.5. The gradeability of the road, the highest grade a vehicle can ascend while maintaining a particular speed, is estimated to be 33.5.

We search for a particular input for the throttle schedule, break schedule, and grade level. The inputs are parametrized using 34 search variables, where 14 are used for the throttle schedule, 14 for the break schedule, and 6 for the grade level. The search variables for each input are interpolated with the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function. The simulation time for the system is 100 sec.

The challenge encountered while running the experiments was in choosing
the appropriate robustness metric. The specification is defined on gear transition sequences therefore a state-based robustness metric alone would not be appropriate. We utilize the hybrid distance metric \[H \] which contains two components. The location component is an integer that presents the distance from the target falsifying location and current best location. The continuous component measures how far we are from satisfying the conditions that cause a jump to the next location on the shortest path to the target location. Here we encounter another issue. To use the hybrid distance metric requires full knowledge of the gear locations and transitions therein. Due to the complexity of the model, and the fact that parts of the model are black box functions, we can only determine the transition guards from the controller, which closely match the plant transitions but not exactly. Thus, the problem becomes more challenging.

We run our falsification algorithm and after 51 tests and 1752.7 sec., we find a counterexample, see Fig. 3, that shows that the system does not satisfy the specification. We have falsified \(\phi = \square((\neg g_1 \land X g_1) \rightarrow \square_{[0, \tau]} \neg g_2) \) for \(\tau = 3 \). The natural question that follows is: What is the minimum value of \(\tau \) for which the system is not satisfied. Essentially, the falsification problem now turns into the parameter estimation problem described in Section 2.2. The smallest value \(\tau \) found for which the specification is falsified is \(\tau = 1.68s \). see Fig. 4.

Acknowledgments: This work was partially funded under NSF awards CNS 1116136, CNS 1319560. We would also like to thank Adel Dokhanchi for his help with the robustness computations.
The scripts for running the falsification and parameter estimation methods are available through our Matlab Toolbox S-TaLiRo [3], available at https://sites.google.com/a/asu.edu/s-taliro/s-taliro under the benchmarks/ARCH2014 subfolder. Running the scripts requires the SimuQuest Enginuity Matlab/Simulink tool package.

References

