
Approximate Solutions for the Minimal Revision Problem of
Specification Automata

Kangjin Kim and Georgios E. Fainekos

Abstract— As robots are being integrated into our daily
lives, it becomes necessary to provide guarantees of safe and
provably correct operation. Such guarantees can be provided
using automata theoretic task and mission planning where the
requirements are expressed as temporal logic specifications.
However, in real-life scenarios, it is to be expected that not all
user task requirements can be realized by the robot. In such
cases, the robot must provide feedback to the user on why it
cannot accomplish a given task. Moreover, the robot should
indicate what tasks it can accomplish which are as “close”
as possible to the initial user intent. Unfortunately, the latter
problem, which is referred to as minimal specification revision
problem, is NP complete. This paper presents an approximation
algorithm that can compute good approximations to the min-
imal revision problem in polynomial time. The experimental
study of the algorithm demonstrates that in most problem
instances the heuristic algorithm actually returns the optimal
solution. Finally, some cases where the algorithm does not
return the optimal solution are presented.

I. INTRODUCTION

As robots become mechanically more capable, they are
going to be more and more integrated into our daily lives.
Non-expert users will have to communicate with the robots
in a natural language setting and request a robot or a team of
robots to accomplish complicated tasks. Therefore, we need
methods that can capture the high-level user requirements,
solve the planning problem and map the solution to low level
continuous control actions. In addition, such frameworks
must come with mathematical guarantees of safe and correct
operation for the whole system and not just the high level
planning or the low level continuous control.

Linear Temporal Logic (LTL) [1] can provide the mathe-
matical framework that can bridge the gap between (i) natural
language and high-level planning algorithms [2], [3], and
(ii) high-level planning algorithms and control [4]–[8]. LTL
has been utilized as a specification language in a range of
robotics applications (see [4]–[14]).

All the previous methods are based on the assumption that
the LTL planning problem has a feasible solution. However,
in real-life scenarios, it is to be expected that not all complex
task requirements can be realized by a robot or a team of
robots. In such failure cases, the robot needs to provide
feedback to the non-expert user on why the specification
failed. Furthermore, it would be desirable that the robot
proposes a number of plans that can be realized by the robot
and which are as “close” as possible to the initial user intent.

This work has been partially supported by award NSF CNS 1116136.
K. Kim and G. Fainekos are with the School of Computing, Informatics

and Decision Systems Engineering, Arizona State University, Tempe, AZ
85281, USA {Kangjin.Kim,fainekos}@asu.edu

Then, the user would be able to understand what are the
limitations of the robot and, also, he/she would be able to
choose among a number of possible feasible plans.

In [15], we made the first steps towards solving the
debugging (i.e., why the planning failed) and revision (i.e.,
what the robot can actually do) problems for automata
theoretic LTL planning [16]. We remark that many robotic
applications, e.g., [4], [6], [10]–[12], [14], are utilizing this
particular method. In the follow-up paper [17], we studied the
theoretical foundations of the specification revision problem
when both the system and the specification can be repre-
sented by ω-automata [18]. We focused on the Minimal Re-
vision Problem (MRP), i.e., finding the “closest” satisfiable
specification to the initial specification, and we proved that
the problem is NP-complete even when severely restricting
the search space. Furthermore, we presented an encoding
of MRP as a satisfiability problem and we demonstrated
experimentally that we can quickly get the exact solution
to MRP for small problem instances.

In this paper, we revisit the MRP problem that we in-
troduced in [17]. We present a heuristic algorithm that can
approximately solve the MRP problem in polynomial time.
We experimentally establish that in most cases the heuristic
algorithm returns the optimal solution on random problem
instances and on LTL planning scenarios from our previous
work. Furthermore, we demonstrate that now we can quickly
return a solution to the MRP problem on large problem
instances. Finally, we provide examples where the algorithm
is guaranteed not to return the optimal solution.

Related Research: The automatic specification revision
problem for automata based planning techniques is a rela-
tively new problem. Finding out why a specification is not
satisfiable on a model is a problem that is very related to
the problems of vacuity and coverage in model checking
[19]. In the context of general planners, the problem of
finding good excuses on why the planning failed has been
studied in [20]. Another related problem is the detection of
the causes of unrealizability in LTL games. In this case, a
number of heuristics have been developed in order to localize
the error and provide meaningful information to the user
for debugging [21], [22]. Along these lines, LTLMop [23]
was developed to debug unrealizable LTL specifications in
reactive planning for robotic applications.

II. PROBLEM FORMULATION

In this paper, we work with discrete abstractions (Finite
State Machines) of the continuous robotic control system [4].
Each state of the Finite State Machine (FSM) T is labeled

by a number of symbols from a set Π = {π0, π1, . . . , πn}
that represent regions in the configuration space [24] of the
robot or, more generally, actions that can be performed by
the robot. The control requirements for such a system can be
posed using specification automata B with Büchi acceptance
conditions [18] also known as ω-automata.

When a specification B is not satisfiable on a particular
system T , then the current motion planning and control
synthesis methods, e.g., [4], [10], [14], based on automata
theoretic concepts [16] simply return that the specification is
not satisfiable without any other user feedback. In such cases,
we would like to be able to solve the following problem and
provide feedback to the user.

Problem 1 (Minimal Revision Problem (MRP)): Given a
system T and a specification automaton B, if the specifi-
cation B cannot be satisfied on T , then find the “closest”
specification B′ to B which can be satisfied on T .

Problem 1 was first introduced in [15] for Linear Temporal
Logic (LTL) specifications. In [15], we provided solutions to
the debugging and (not minimal) revision problems and we
demonstrated that we can easily get a minimal revision of
the specification when the discrete controller synthesis phase
fails due to unreachable states in the system.

Assumption 1: All the states on T are reachable.
In [17], we introduced a notion of distance on a restricted

space of specification automata and, then, we demonstrated
that MRP is in NP-complete. Since brute force search is
prohibitive for any reasonably sized problem, we presented
an encoding of MRP as a satisfiability problem. Nevertheless,
even when utilizing state of the art satisfiability solvers, the
size of the systems that we could handle remained small
(single robot scenarios in medium complexity environments).

Contributions: In this paper, we provide an approxima-
tion algorithm for MRP. The algorithm is based on Dijkstra’s
single-source shortest path algorithm (DSPA) [25], which
can be regarded both as a greedy and a dynamic program-
ming algorithm [26]. We demonstrate through numerical
experiments that not only the algorithm returns an optimal
solution in various scenarios, but also that it outperforms in
computation time our satisfiability based solution.

III. PRELIMINARIES

In this section, we review basic results from [4], [15]–
[17]. In detail, we provide a review of the automata theo-
retic planning and the specification revision problem. Our
contributions in Section IV will be founded on these results.

A. Constructing Discrete Controllers

We assume that the combined actions of the robot/team of
robots and their operating environment can be represented
using an FSM.

Definition 1 (FSM): A Finite State Machine is a tuple
T = (Q,Q0,→T , hT ,Π) where: Q is a set of states;
Q0 ⊆ Q is the set of possible initial states;→T = E ⊆ Q×Q
is the transition relation; and, hT : Q → P(Π) maps each
state q to the set of atomic propositions that are true on q.

We define a path on the FSM to be a sequence of states
and a trace to be the corresponding sequence of sets of
propositions. Formally, a path is a function p : N → Q
such that for each i ∈ N we have p(i) →T p(i + 1)
and the corresponding trace is the function composition
p̄ = hT ◦ p : N→ P(Π). The language L(T) of T consists
of all possible traces.

In this work, we are interested in the ω-automata that will
impose certain requirements on the traces of T . ω-automata
differ from the classic finite automata in that they accept
infinite strings (traces of T in our case).

Definition 2: A automaton is a tuple B =
(SB, sB0 ,Ω, δB, FB) where: SB is a finite set of states; sB0 is
the initial state; Ω is an input alphabet; δB : SB×Ω→ P(SB)
is a transition function; and FB ⊆ SB is a set of final states.

When s′ ∈ δB(s, l), we also write s
l→B s′ or

(s, l, s′) ∈→B. A run r of B is a sequence of states r :
N→ SB that occurs under an input trace p̄ taking values in
Ω. That is, for i = 0 we have r(0) = sB0 and for all i ≥ 0 we

have r(i)
p̄(i)→ B r(i+1). Let lim(·) be the function that returns

the set of states that are encountered infinitely often in the
run r of B. Then, a run r of an automaton B over an infinite
trace p̄ is accepting if and only if lim(r) ∩ FB 6= ∅. This is
called a Büchi acceptance condition. Finally, we define the
language L(B) of B to be the set of all traces p̄ that have a
run that is accepted by B.

A specification automaton is an automaton with Büchi ac-
ceptance condition where the input alphabet is the powerset
of the labels of the system T , i.e., Ω = P(Π). In order to
simplify the discussion in Section III-B, we will be using the
following assumptions and notation
• we define the set EB ⊆ SB×SB, such that (s, s′) ∈ EB

iff ∃l ∈ Ω , s l→B s′; and,
• we define the function λB : SB×SB → Ω which maps a

pair of states to the label of the corresponding transition,
i.e., if s l→B s′, then λB(s, s′) = l; and if (s, s′) 6∈ EB,
then λB(s, s′) = ∅.

In brief, our goal is to generate paths on T that satisfy
the specification Bs. In automata theoretic terms, we want to
find the subset of the language L(T) which also belongs to
the language L(Bs). This subset is simply the intersection of
the two languages L(T) ∩ L(Bs) and it can be constructed
by taking the product T × Bs of the FSM T and the
specification automaton Bs. Informally, the automaton Bs
restricts the behavior of the system T by permitting only
certain acceptable transitions. Then, given an initial state
in the FSM T , we can choose a particular trace from
L(T) ∩ L(Bs) according to a preferred criterion.

Definition 3: The product automaton A = T × Bs is the
automaton A = (SA, sA0 ,P(Π), δA, FA) where: SA = Q ×
SBs ; sA0 = {(q0, s

Bs
0) | q0 ∈ Q0}; δA : SA×P(Π)→ P(SA)

s.t. (qj , sj) ∈ δA((qi, si), l) iff qi →T qj and sj ∈ δBs(si, l)
with l ⊆ hT (qj); FA = Q×F is the set of accepting states.

Note that L(A) = L(T) ∩ L(Bs). We say that Bs is
satisfiable on T if L(A) 6= ∅. Moreover, finding a satisfying
path on T ×Bs is an easy algorithmic problem [1]. First, we

convert automaton T ×Bs to a directed graph and, then, we
find the strongly connected components (SCC) in that graph.
If at least one SCC that contains a final state is reachable
from an initial state, then there exist accepting (infinite) runs
on T × Bs that have a finite representation. Each such run
consists of two parts: prefix: a part that is executed only
once (from an initial state to a final state) and, lasso: a part
that is repeated infinitely (from a final state back to itself).
Note that if no final state is reachable from the initial or if no
final state is within an SCC, then the language L(A) is empty
and, hence, the high level synthesis problem does not have
a solution. Namely, the synthesis phase has failed and we
cannot find a system behavior that satisfies the specification.

B. The Specification Revision Problem

Intuitively, a revised specification is one that can be
satisfied on the discrete abstraction of the workspace or the
configuration space of the robot. To search for a minimal
revision, we define an ordering relation on automata as well
as a distance function between automata. Similar to the case
of LTL formulas in [15], we do not want to consider the
“space” of all possible Büchi automata, but rather the “space”
of specification automata which are semantically close to the
initial specification automaton Bs. The later will imply that
we remain close to the initial intention of the designer. We
propose that this space consists of all the automata that can
be derived from Bs by removing atomic propositions from
the transition input. Our definition of the ordering relation
between automata relies on the previous assumption.

Definition 4 (Relaxation): Let B1 = (SB1
, sB1

0 , Ω, →B1
,

FB1
) and B2 = (SB2

, sB2
0 ,Ω,→B2

, FB2
) be two Büchi

automata. Then, we say that B2 is a relaxation of B1 and we
write B1 � B2 if and only if SB1

= SB2
= S, sB1

0 = sB2
0 ,

FB1 = FB2 and
1) ∀(s, l, s′) ∈→B1 − →B2 . ∃l′ .

(s, l′, s′) ∈→B2
− →B1

and l′ ⊆ l.
2) ∀(s, l, s′) ∈→B2

− →B1
. ∃l′ .

(s, l′, s′) ∈→B1
− →B2

and l ⊆ l′.
We remark that if B1 � B2, then L(B1) ⊆ L(B2) since

the relaxed automaton allows more behaviors to occur. If two
automata B1 and B2 cannot be compared under relation �,
then we write B1 ‖ B2.

We can now define the set of automata over which we will
search for a minimal solution that has nonempty intersection
with the system.

Definition 5: Given a system T and a specification au-
tomaton Bs, the set of valid relaxations of Bs is defined as
R(Bs, T) = {B | Bs � B and L(T × B) 6= ∅}.

We can now search for a minimal solution in the set
R(Bs, T). That is, we can search for some B ∈ R(Bs, T)
such that if for any other B′ ∈ R(Bs, T), we have B′ � B,
then L(B) = L(B′). However, this does not imply that
a minimal solution semantically is minimal structurally as
well. In other words, it could be the case that B1 and B2 are
minimal relaxations of some Bs, but B1 ‖ B2 and, moreover,
B1 requires the modification of only one transition while B2

requires the modification of two transitions. Therefore, we

must define a metric on the set R(Bs, T), which accounts
for the number of changes from the initial specification
automaton Bs.

Definition 6: Given a system T and a specification au-
tomaton Bs, we define the distance of any B ∈ R(Bs, T)
from Bs to be distBs(B) =

∑
(s,s′)∈EBs

|λBs(s, s
′) −

λB(s, s′)| where | · | is the cardinality of the set.
Therefore, Problem 1 can be restated as:
Problem 2: Given a system T and a specification au-

tomaton Bs such that L(T × Bs) = ∅, find B ∈
arg min{distBs(B′) | B′ ∈ R(Bs, T)}.
C. Minimal Revision as a Graph Problem

In order to solve Problem 2, we construct a directed
labeled graph GA from the product automaton A = T ×Bs.
The edges of GA are labeled by a set of atomic propositions
which if removed from the corresponding transition on Bs,
they will enable the transition on A. The overall problem
then becomes one of finding the least number of atomic
propositions to be removed in order for the product graph to
have an accepting run. Next, we provide the formal definition
of the graph GA which corresponds to a product automaton
A while considering the effect of revisions.

Definition 7: Given a system T and a specification au-
tomaton Bs, we define the graph GA = (V,E, vs, Vf ,Π,Λ),
which corresponds to the product A = T × Bs as follows:
V = S is the set of nodes; E = EA∪ED ⊆ S×S, where EA
is the set of edges that correspond to transitions on A, i.e.,
((q, s), (q′, s′)) ∈ EA iff ∃l ∈ P(Π) . (q, s)

l→A (q′, s′); and
ED is the set of edges that correspond to disabled transitions,
i.e., ((q, s), (q′, s′)) ∈ ED iff q →T q′ and s

l→Bs s
′ with

l∩ (Π−hT (q′)) 6= ∅; vs = sA0 is the source node; Vf = FA
is the set of sinks; Π = {〈π, (s, s′)〉 | π ∈ Π, (s, s′) ∈ EBs};
Λ : E → P(Π) is the edge labeling function such that
if e = ((q, s), (q′, s′)), then Λ(e) = {〈π, (s, s′)〉 | π ∈
(λBs(s, s

′)− hT (q′))}.
If Λ(e) 6= ∅, then it specifies those atomic propositions in

λBs(s, s
′) that need to be removed to enable the edge in the

product state. Note that the labels of the edges of GA are
subsets of Π rather than Π. This is due to the fact that we
are looking into removing an atomic proposition π from a
specific transition (s, l, s′) of Bs rather than all π in Bs.

IV. AN APPROXIMATION ALGORITHM FOR MRP

In this section, we present an approximation algorithm
(AAMRP) for the Minimal Revision Problem (MRP). It is
based on Dijkstra’s shortest path algorithm (DSPA) [25]. The
main difference from DSPA is that instead of finding the
minimum weight path to reach each node, AAMRP tracks
the number of atomic propositions that must be removed
from each edge on the paths of the graph GA.

The pseudocode for the AAMRP is presented in Algo-
rithms 1 and 2. The main algorithm (Alg. 1) divides the prob-
lem into two tasks. First, in line 5, it finds an approximation
to the minimum number of atomic propositions from Π that
must be removed to have a prefix path to each reachable sink
(see Section III-A). Then, in line 10, it repeats the process

Algorithm 1 AAMRP

Inputs: a graph GA = (V,E, vs, Vf ,Π,Λ).
Outputs: the list L of atomic propositions form Π that must
be removed Bs.

1: procedure AAMRP(GA)
2: L← Π
3: M[:, :]← (Π,∞) . Each entry is set to (Π,∞)
4: M[vs, :]← (∅, 0) . Initialize the source node
5: 〈M,P,V〉 ← FINDMINPATH(GA,M, 0)
6: if V ∩ Vf = ∅ then
7: L← ∅
8: else
9: for vf ∈ V ∩ Vf do

10: Lp ← GETAPFROMPATH(vs, vf ,M,P)
11: M′[:, :]← (Π,∞)
12: M′[vf , :]←M[vf , :]
13: G′A ← (V,E, vf , {vf},Π, L)
14: 〈M′,P′,V ′〉 ← FINDMINPATH(G′A,M′, 1)
15: if vf ∈ V ′ then
16: Ll ← GETAPFROMPATH(vf , vf ,M′,P′)
17: if |Lp ∪ Ll| ≤ |L| then
18: L← Lp ∪ Ll

19: end if
20: end if
21: end for
22: end if
23: return L
24: end procedure
The function GETAPFROMPATH((vs, vf ,M,P)) returns the
atomic propositions that must be removed from Bs in order
to enable a path on A from a starting state vs to a final state
vf given the tables M and P.

from each reachable final state to find an approximation to
the minimum number of atomic propositions that must be
removed so that a lasso path is enabled. The combination
of prefix/lasso that removes the minimal number of atomic
propositions is returned to the user.

Algorithm 2 follows closely DSPA [25]. It maintains a
list of visited nodes V and a table M indexed by the graph
vertices which stores the set of atomic propositions that must
be removed in order to reach a particular node on the graph.
Given a node v, the size of the set |M[v, 1]| is an upper
bound on the minimum number of atomic propositions that
must be removed. That is, if we remove all π ∈ M[v, 1]
from Bs, then we enable a simple path (i.e., with no cycles)
from a starting state to the state v. The size of |M[v, 1]|
is stored in M[v, 2] which also indicates that the node v is
reachable when M[v, 2] <∞.

The algorithm works by maintaining a queue with the
unvisited nodes on the graph. Each node v in the queue
has as key the number of atomic propositions that must be
removed so that v becomes reachable on A. The algorithm
proceeds by choosing the node with the minimum number
of atomic propositions discovered so far (line 18). Then,

Algorithm 2 FINDMINPATH

Inputs: a graph GA = (V,E, vs, Vf ,Π,Λ), a table M and
a flag lasso on whether this is a lasso path search.
Variables: a queue Q, a set V of visited nodes and a table
P indicating the parent of each node on a path.
Output: the tables M and P and the visited nodes V

1: procedure FINDMINPATH(GA,M,lasso)
2: V ← {vs}; Q ← V − {vs}
3: P[:]← ∅ . Each entry of P is set to ∅
4: for v ∈ V such that (vs, v) ∈ E and v 6= vs do
5: 〈M,P〉 ← RELAX((vs, v),M,P,Λ)
6: end for
7: if lasso = 1 then
8: if (vs, vs) ∈ E then
9: M[vs, 1]←M[vs, 1] ∪ Λ(vs, vs)

10: M[vs, 2]← |M[vs, 1] ∪ Λ(vs, vs)|
11: P[vs] = vs
12: else
13: M[vs, :]← (Π,∞)
14: end if
15: end if
16: while Q 6= ∅ do
17: . Get node u with minimum M[u, 2]
18: u← EXTRACTMIN(Q)
19: if M[u, 2] <∞ then
20: V ← V ∪ {u}
21: for v ∈ V such that (u, v) ∈ E do
22: 〈M,P〉 ← RELAX((u, v),M,P,Λ)
23: end for
24: end if
25: end while
26: return M, P, V
27: end procedure

(T) (Bs)

q0 q1

hT (q1) = {π1, π3}

q2

hT (q2) = {π1, π2}

q3 hT (q3) = {π1, π3}

s1

π0 ∧ π1 ∧ π2 ∧ π3

(GA)

q0, s1 q1, s1 q2, s1

q3, s1

Λ(e1) = {π0, π2}
L(e1) = {y((s1, s1), π0),

y((s1, s1), π2)}

Λ(e2) = {π0, π3}
L(e2) = {y((s1, s1), π0),

y((s1, s1), π3)}

L(e3) = {y((s1, s1), π0),
y((s1, s1), π2)}Λ(e3) = {π0, π2}

Fig. 4. Example 3.T : part of the system;Bs: part of the specification
automaton;GA: part of the graph that corresponds to the product automaton.

to disabled transitions, i.e.,((q, s), (q′, s′)) ∈ ED iff

q →T q′ ands
l→Bs s

′ with l ∩ (Π− hT (q′)) 6= ∅
• vs = sA0 is the source node
• Vf = FA is the set of sinks
• Π = {〈π, (s, s′)〉 | π ∈ Π, (s, s′) ∈ EBs}
• Λ : E → P(Π) is the edge labeling function such that

if e = ((q, s), (q′, s′)), then

Λ(e) = {〈π, (s, s′)〉 | π ∈ (λBs(s, s
′)− hT (q

′))}.
If Λ(e) 6= ∅, then it specifies those atomic propositions in

λBs(s, s
′) that need to be removed in order to enable the edge

in the product state. Note that the labels of the edges ofGA
are subsets ofΠ rather thanΠ. This is due to the fact that we
are looking into removing an atomic propositionπ from a
specific transition(s, l, s′) of Bs rather than all occurrences
of π in Bs.

Example 3:Consider the Example in Fig. IV-A. In the
figure, we provide a partial description of an FSMT , a
specification automatonBs and the corresponding product
automatonA. The dashed edges indicate disabled edges
which are labeled by the atomic propositions that must
be removed from the specification in order to enable the
transition on the system.

V. A N APPROXIMATION ALGORITHM FOR MRP

In this section, we present an approximation algorithm
(AAMRP) for the Minimal Revision Problem (MRP). It is
based on Dijkstra’s shortest path algorithm [24]. The main
difference from Dijkstra’s algorithm is that instead of finding
the minimum weight path to reach each node, AAMRP tracks
the number of atomic propositions that must be removed
from each edge on the paths of the graphGA.

Let’s see the pseudo code of this heuristic. This heuristic
starts from edges related in the source node s1,

We will first present the algorithm using an example.
Example 4:Let us consider the graph in Fig.??. The

source node of this graph isvs = s1 and the sink nodes
areVf = {s6, s7}. TheΠ set of this graph is{π1, π2, π3}.

To deal with the atomic propositions on each edge, the
heuristic uses a memorization tableV T of N · M entries

v1 v2

v3 v4

v5 v6

{π1}

{π1, π3}

{π1, π4}

{π2}

{π4}

{π3}

{π4}

{π1}

Fig. 5. The graph of Example 4. The sourcevs = v1 is denoted by an
arrow and the sinkv6 by double circle (Vf = {v6}).

TABLE I

VT TABLE OF EXAMPLE 1 FOR A PATH FROM S1 TO S6

VT 4 3 2 1

1 0 0 0 0

2 0 0 0 1

3 0 1 0 1

4 0 0 1 1

5 1 0 1 1

6 1 1 1 1

whereN is the number of vertices and M is the number of
atomic propositions. In this table, every entryV T [i, j] stores
the atomic needed to reach each node.

Each entry of the table?? contains a set of APs which
requires to reach the node. From s1 to s2, there are three
proper paths; first one is (s1,s2), second one is (s1,s3),
(s3,s2), and the third one is (s1,s4), (s4,s5), (s5,s2). Thefirst
path to s2 requires the ap set 1,2, the second one requires
2,3, and the third one requires 3. Therefore, the node s2 has
3 in the entry of the table.

The array table?? represents the path from s6 to s1. It
starts from s6. The previous node of the entry of s6 is 4, and
the previous node of the entry s4 is 1. Thus, we can get the
path (s1,s4), (s4,s6).

In order to check if the graph holds lasso condition to
one of the reachable sink nodes, we need to attempt the
similar search, again. In this case, instead of starting at the
source node, one of the sinks node should be the source
node, and the destination should be the sink node, so that
there exists a cycle path from the sink node to itself. After
getting reachable sink nodes from the heuristic, the similar
heuristic?? continues the similar search.

With ?? and??, the whole procedure is as following??.
This heuristic may not get the optimal solution as the

shortest path algorithm does because always choosing the
path having minimum number of APs does not guarantee
that the whole path from a source node to a sink node has
minimum number of AP sets. Let’s see an example graph.

When we use the heuristic??, the table VT has the set of
APs as following table V

In this graph, the optimal solution is 1,3,4. However, the
heuristic returns 1,2,3,4. The entry of node 4 of the table
VT has a set 1,2. Since the entry of VT[4] is replaced to
1,2] by the path (s1,s2), (s2,s4) earlier than the path from
(s1,s3), (s3,s4) and each path has same number of atomic
propositions on it, the later path cannot replace the entry of
VT[4].

Fig. 1. The graph of Example 1. The source vs = v1 is denoted by an
arrow and the sink v6 by double circle (Vf = {v6}).

this node is used in order to updated the estimates for the
minimum number of atomic propositions needed in order to
reach its neighbors (line 22). A notable difference of Alg.
2 from DSPA is the check for lasso paths in lines 7-15.
After the source node is used for updating the estimates of
its neighbors, its own estimate for the minimum number of
atomic propositions is updated either to the value indicated
by the self loop or the maximum possible number of atomic
propositions. This is required in order to compare the differ-
ent paths that reach a node from itself.

The following example demonstrates how the algorithm

Algorithm 3 RELAX

Inputs: an edge (u, v), the tables M and P and the edge
labeling function Λ
Output: the tables M and P

1: procedure RELAX((u, v),M,P,Λ)
2: if |M[u, 1] ∪ Λ(u, v)| <M[v, 2] then
3: M[v, 1]←M[u, 1] ∪ Λ(u, v)
4: M[v, 2]← |M[u, 1] ∪ Λ(u, v)|
5: P[v]← u
6: end if
7: return M, P
8: end procedure

works and indicates the structural conditions on the graph
that make the algorithm non-optimal.

Example 1: Let us consider the graph in Fig. 1. The
source node of this graph is vs = v1 and the set of sink
nodes is Vf = {v6}. The Π set of this graph is {π1, . . . , π4}.
Consider the first call of FINDMINPATH (line 5 of Alg. 1).
• Before the first execution of the while loop (line 16):

The queue contains Q = {v2, . . . , v6}. The table M
has the following entries:M[v1, :] = 〈∅, 0〉,M[v2, :] =
〈{π1}, 1〉, M[v3, :] = 〈{π1, π3}, 2〉, M[v4, :] = . . . =
M[v6, :] =

〈
Π,∞

〉
.

• Before the second execution of the while loop (line
16): The node v2 was popped from the queue since
it had M[v2, 2] = 1. The queue now contains Q =
{v3, . . . , v6}. The table M has the following rows:
M[v1, :] = 〈∅, 1〉, M[v2, :] = 〈{π1}, 1〉, M[v3, :] =
〈{π1, π3}, 2〉, M[v4] = 〈{π1, π2}, 2〉, M[v5, :] =
M[v6, :] =

〈
Π,∞

〉
.

• At the end of FINDMINPATH (line 27): The queue
now is empty. The table M has the following rows:
M[v1, :] = 〈∅, 0〉, M[v2, :] = 〈{π1}, 1〉, M[v3, :] =
〈{π1, π3}, 2〉, M[v4, :] = 〈{π1, π2}, 2〉, M[v5, :] =
〈{π1, π2, π4}, 3〉, M[v6, :] =

〈
Π, 4

〉
, which corre-

sponds to the path v1, v2, v4, v5, v6.
Note that algorithm returns a set of atomic propositions

Lp = Π which is not optimal (|Lp| = 4). The path v1, v3,
v4, v5, v6 would return Lp = {π1, π3, π4} with |Lp| = 3. 4

Correctness: The correctness of AAMRP is based on the
fact that a node v ∈ V is reachable on GA if and only if
M[v, 2] <∞. The argument for this claim is similar to the
proof of correctness of DSPA in [25]. If AAMRP returns a
set of atomic propositions L which are removed from Bs,
then the language L(A) is non-empty. This is immediate by
the construction of the graph GA (Def. 7).

Running time: The running time analysis of the AAMRP
is similar to that of DSPA. In the following, we will abuse
notation when we use the O notation and treat each set
symbol S as its cardinality |S|.

First, we will consider FINDMINPATH. The fundamental
difference of AAMRP over DSPA is that we have set
theoretic operations. We will assume that we are using a data
structure for sets that supports O(1) set cardinality quarries,

O(log n) membership quarries and element insertions [25]
and O(n) set up time. Under the assumption that Q is imple-
mented in such a data structure, each EXTRACTMIN takes
O(log V) time. We have O(V) such operations (actually
|V | − 1) for a total of O(V log V).

Setting up the data structure for Q will take O(V) time.
Furthermore, in the worst case, we have a set Λ(e) for
each edge e ∈ E with set-up time O(EΠ). Note that the
initialization of M[v, :] to

〈
Π,∞

〉
does not have to be

implemented since we can have indicator variables indicating
when a set is supposed to contain all the (known in advance)
elements.

Assuming that E is stored in an adjacency list, the total
number of calls to RELAX at lines 4 and 21 of Alg. 2 will
be O(E) times. Each call to RELAX will have to perform
a union of two sets (M[u, 1] and Λ(u, v)). Assuming that
both sets have in the worst case |Π| elements, each union
will take O(Π log Π) time. Finally, each set size quarry takes
O(1) time and updating the keys in Q takes O(log V) time.
Therefore, the running time of FINDMINPATH is O(V +
EΠ + V log V + E(Π log Π + log V)).

Note that under Assumption 1 all nodes of T are reachable
(|V | < |E|), the same property does not hold for the product
automaton. (e.g, think of an environment T and a specifica-
tion automaton whose graphs are Directed Acyclic Graphs
(DAG). However, we still have (|V | < |E|). FINDMINPATH
takes O(E(Π log Π+log V)). Therefore, we observe that the
running time also depends on the size of the set Π. However,
such a bound is very pessimistic since not all the edges will
be disabled on A and, moreover, most edges will not have
the whole set Π as candidates for removal.

Finally, we consider AAMRP. The loop at line 9 is going
to be called O(Vf) times. At each iteration, FINDMINPATH
is called. Furthermore, each call to GETAPFROMPATH is go-
ing to take O(VΠ log Π) time (in the worst case we are going
to have |V | unions of sets of atomic propositions). There-
fore, the running time of AAMRP is O(Vf (VΠ log Π +
E(Π log Π + log V))) = O(VfE(Π log Π + log V)) which
is polynomial in the size of the input graph.

Approximation bounds: Example 1 can be modified to
demonstrate that AAMRP does not have a constant approx-
imation ratio on arbitrary graphs. It is also easy to see that
AAMRP always returns the optimal solution on directed
trees. There is also a special case, where AAMRP returns a
solution whose size is twice the size of the optimal solution.

Theorem 1: AAMRP on planar Directed Acyclic Graphs
(DAG) where all the paths merge on the same node is a
2-approximation algorithm.

V. EXAMPLES AND NUMERICAL EXPERIMENTS

In this section, we present experimental results using our
prototype implementation of AAMRP. The prototype imple-
mentation is in Python. Therefore, we expect the running
times to substantially improve with a C implementation using
state-of-the-art data structure implementations.

For the experiments, we utilized the ASU super computing
center which consists of clusters of Dual 4-core processors,

16 GB Intel(R) Xeon(R) CPU X5355 @2.66 Ghz running
CentOS 5.5. Our implementations do not utilize the parallel
architecture. The clusters were used to run the many different
test cases in parallel.

In order to experimentally demonstrate the approximation
ratio of AAMRP, we compared the solutions returned by
AAMRP with our Answer Set Programming (ASP) imple-
mentation of MRP that we developed in [17]. The ASP
implementation is guaranteed to return a minimal solution
to the MRP problem.

Example 2 (Robot Motion Planning): We revisit our ex-
ample introduced in [17]. The product automaton of this
example has 85 states, 910 transitions and 17 reachable
final states. It takes 0.095 sec by AAMRP and 0.699 sec
by ASP. AAMRP returns the set of atomic propositions
{〈π4, (s2, s4)〉} as a minimal revision to the problem, which
is revision(3) among the three minimal revisions of the
example. Thus, it is an optimal solution. 4

We performed a large number of experimental compar-
isons on random benchmark instances of various sizes.
The first series of experiments involved randomly generated
DAGs. Each test case consisted of two randomly generated
DAGs which represented an environment and a specification.
Both graphs have self-loops on their leaves so that a feasible
lasso path can be found. The number of atomic propositions
in each instance was equal to four times the number of
nodes in each acyclic graph. For example, in the benchmark
where the graph had 9 nodes, each DAG had 3 nodes, and
the number of atomic propositions was 12. The sinks are
chosen randomly and they represent 5%-40% of the nodes.
The number of edges in most instances were 2-3 times more
than the number of nodes.

Table I compares the results of the ASP solver with
the results of AAMRP on test cases of different sizes
(total number of nodes). For each graph size, we performed
200 tests and we report minimum, average and maximum
computation times in sec. Both algorithms were able to finish
the computation and return a minimal revision for all the test
cases. Nevertheless, in the large problem instances, AAMRP
achieved a 10 time speed-up on the average running time. An
interesting observation is that the maximum approximation
ratio is experimentally determined to be 2 which validates
the theoretical analysis.

For the next experiment, each test case was a cross product
graph of two bidirectional spanning trees. One represents the
environment and the other the specification. The number of
atomic propositions was equal to two times the number of
nodes in each spanning tree. For example, in the instance
having 9 nodes, each spanning tree had 3 nodes, and, thus,
it had 6 atomic propositions. Each instance had 5%-40% of
sinks. The number of edges in most instances was three times
more then the number of nodes in each instance.

The results are presented in Table II. The observations on
the results are similar to the previous experiments. However,
we remark that in this case ASP was not able to provide
an answer to all the test cases within a 2hr window. The
comparison for the approximation ratio was possible only

for the test cases where ASP successfully completed the
computation. In this case, in the large problem instances,
AAMRP achieved at least 100x speed-up on average running
time.

Finally, we attempted to determine the problem sizes that
our prototype implementation can handle. The results are
presented in Table III. We observe that approximately 60,025
nodes would be the limit of the AAMRP implementation in
Python. However, we expect that we can achieve at least a
10 times speed up with a C implementation and we plan to
pursue this direction in the future.

VI. CONCLUSIONS

In this paper, we provided a polynomial time approxima-
tion algorithm for the problem of minimal revision of spec-
ification automata. The minimal revision problem is useful
when automata theoretic planning fails and the modification
of the environment is not possible. In such cases, it is
desirable that the user receives feedback from the system
on what the system can actually achieve. The challenge in
proposing a new specification automaton is that the new spec-
ification should be as close as possible to the initial intent
of the user. Our proposed algorithm experimentally achieves
approximation ratio very close to 1. Furthermore, the running
time of our prototype implementation is reasonable enough
to be able to handle realistic scenarios.

Future research will proceed along several directions.
Since the initial specification is ultimately provided in some
form of natural language, we would like the feedback that we
provide to be in a natural language setting as well. Second,
we would like to study whether a constant factor approx-
imation algorithm exists for the general case. Finally, we
plan on developing a robust and efficient publicly available
implementation of our approximation algorithm.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: MIT Press, 1999.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Translating
structured english to robot controllers,” Advanced Robotics, vol. 22,
no. 12, pp. 1343–1359, 2008.

[3] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn, “What to do
and how to do it: Translating natural language directives into temporal
and dynamic logic representation for goal management and action
execution,” in Proceedings of the IEEE international conference on
robotics and automation, 2009.

[4] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, Feb. 2009.

[5] S. Karaman, R. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,”
in IEEE Conf. on Decision and Control, 2008.

[6] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based mo-
tion planning with temporal goals,” in International Conference on
Robotics and Automation. IEEE, 2010, pp. 2689–2696.

[7] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proceedings of the 13th
ACM international conference on Hybrid systems: computation and
control. New York, NY, USA: ACM, 2010, pp. 101–110.

[8] P. Roy, P. Tabuada, and R. Majumdar, “Pessoa 2.0: a controller
synthesis tool for cyber-physical systems,” in Proceedings of the 14th
international conference on Hybrid systems: computation and control,
ser. HSCC ’11. New York, NY, USA: ACM, 2011, pp. 315–316.

Nodes ASP AAMRP RATIO
min avg max succ min avg max succ min avg max

9 0.003 0.0071 0.012 200/200 0.013 0.0157 0.025 200/200 1 1.00667 2
100 0.099 0.1954 1.405 200/200 0.027 0.06727 0.09 200/200 1 1.000625 1.125
196 0.335 1.25058 6.003 200/200 0.057 0.22372 0.289 200/200 1 1 1
324 0.869 5.3316 14.731 200/200 0.113 0.6601 0.912 200/200 1 1.001417 1.2
400 1.267 12.87 35.58 200/200 0.131 1.28913 1.351 200/200 1 1 1
529 3.086 34.1642 103.638 200/200 0.37 3.107 4.141 200/200 1 1 1

TABLE I
NUMBER OF NODES VERSUS THE RESULTS OF ASP SOLVER AND AAMRP. UNDER THE ASP AND AAMRP COLUMNS THE NUMBERS INDICATE

COMPUTATION TIMES IN sec. RATIO INDICATES THE EXPERIMENTALLY OBSERVED APPROXIMATION RATIO TO THE OPTIMAL SOLUTION.

Nodes ASP AAMRP RATIO
min avg max succ min avg max succ min avg max

9 0.005 0.0097 0.039 200/200 0.012 0.0153 0.0449 200/200 1 1 1
100 0.378 18.4679 3502.343 200/200 0.028 0.063 0.09 200/200 1 1.001 1.2
196 3.336 31.995 685.819 167/200 0.0439 0.203 0.249 200/200 1 1 1
306 9.801 75.524 2795.337 149/200 0.101 0.5493 0.7 200/200 1 1.000839 1.125
400 21.744 124.7486 164.5459 148/200 0.134 1.124 1.2929 200/200 1 1 1
506 58.67 241.167 1054.98 152/200 0.2329 2.0795 1.821 200/200 1 1.002193 1.333333

TABLE II
NUMBER OF NODES VERSUS THE RESULTS OF ASP SOLVER AND AAMRP. UNDER THE ASP AND AAMRP COLUMNS THE NUMBERS INDICATE

COMPUTATION TIMES IN sec. RATIO INDICATES THE EXPERIMENTALLY OBSERVED APPROXIMATION RATIO TO THE OPTIMAL SOLUTION.

Nodes ASP AAMRP RATIO
min avg max succ min avg max succ

1024 24.438 168.2133 237.758 10/10 0.125 0.23 0.325 9/10 1
10000 0/10 15.723 76.164 128.471 9/10
20164 0/10 50.325 570.737 1009.675 8/10
50176 0/10 425.362 1993.449 4013.717 3/10
60025 0/10 6734.133 6917.094 7100.055 2/10

TABLE III
NUMBER OF NODES VERSUS THE RESULTS OF ASP SOLVER AND AAMRP. UNDER THE ASP AND AAMRP COLUMNS THE NUMBERS INDICATE

COMPUTATION TIMES IN sec. RATIO INDICATES THE EXPERIMENTALLY OBSERVED APPROXIMATION RATIO TO THE OPTIMAL SOLUTION.

[9] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370 – 1381, 2009.

[10] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams
of robots from temporal logic specifications,” IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[11] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. LaValle,
“Controlling wild bodies using linear temporal logic,” in Proceedings
of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.

[12] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Op-
timal multi-robot path planning with temporal logic constraints,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems,, 2011, pp. 3087 –3092.

[13] B. Lacerda and P. Lima, “Designing petri net supervisors from ltl
specifications,” in Proceedings of Robotics: Science and Systems, Los
Angeles, CA, USA, June 2011.

[14] A. LaViers, M. Egerstedt, Y. Chen, and C. Belta, “Automatic gen-
eration of balletic motions,” IEEE/ACM International Conference on
Cyber-Physical Systems, vol. 0, pp. 13–21, 2011.

[15] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Proceedings of the ICRA, May 2011.

[16] G. D. Giacomo and M. Y. Vardi, “Automata-theoretic approach to
planning for temporally extended goals,” in European Conference on
Planning, ser. LNCS, vol. 1809. Springer, 1999, pp. 226–238.

[17] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the revision
problem of specification automata,” in Proceedings of the IEEE
Conference on Robotics and Automation, May 2012.

[18] J. R. Buchi, “Weak second order arithmetic and finite automata,”

Zeitschrift für Math. Logik und Grundlagen Math., vol. 6, pp. 66–
92, 1960.

[19] O. Kupferman, W. Li, and S. A. Seshia, “A theory of mutations with
applications to vacuity, coverage, and fault tolerance,” in Proceedings
of the International Conference on Formal Methods in Computer-
Aided Design. IEEE Press, 2008, pp. 25:1–25:9.

[20] Moritz Göbelbecker and Thomas Keller and Patrick Eyerich and
Michael Brenner and Bernhard Nebel, “Coming up with good excuses:
What to do when no plan can be found,” in Proceedings of the
20th International Conference on Automated Planning and Scheduling.
AAAI, 2010, pp. 81–88.

[21] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev, “Diagnostic
information for realizability,” in Verification, Model Checking, and
Abstract Interpretation, ser. LNCS, F. Logozzo, D. Peled, and L. Zuck,
Eds. Springer, 2008, vol. 4905, pp. 52–67.

[22] R. Konighofer, G. Hofferek, and R. Bloem, “Debugging formal
specifications using simple counterstrategies,” in Formal Methods in
Computer-Aided Design. IEEE, nov 2009, pp. 152 –159.

[23] V. Raman and H. Kress-Gazit, “Analyzing unsynthesizable specifica-
tions for high-level robot behavior using LTLMoP,” in Computer Aided
Verification, ser. LNCS, vol. 6806. Springer, 2011, pp. 663–668.

[24] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://msl.cs.uiuc.edu/planning/

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press/McGraw-Hill, Sep 2001.

[26] M. Sniedovich, “Dijkstras algorithm revisited: the dynamic program-
ming connexion,” Control and Cybernetics, vol. 35, no. 3, pp. 599–
620, 2006.

