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Abstract—In this paper we consider the problem of routing the A 4 1
lightpaths of a logical topology of a WDM network on an arbi-
trary physical topology, such that the logical topology remains con- E B . 4 2
nected even after the failure of a physical link. We focus our atten-
tion on the ring interconnection as the logical topology because
it is widely used in many protection schemes. We first establish 3
the necessary and sufficient condition for a ring logical topology to @ (b) ()
withstand failure of a single physical link. Next we show that the
testing of this necessary and sufficient condition is an NP-complete Fig. 1. Logical and physical topologies of WDM networks
problem. Finally, we give an algorithm for testing the necessary
and sufficient condition and demonstrate the execution of the al-
gorithm with the help of an example. pathsin the physical topology. Consider the following embed-

ding of the logical topology into the physical topology shown
in figures 1a and 1b respectively. The nodes are mapped as
[. INTRODUCTION A—1,B—2C — 3D — 4 E — 5, and the edges are

Survivabilty of high bandwidth optical networks has becom@apped a¢A— B) — (1-2),(B-C) — (2—3),(C—D) —
important area of research in recent times due to its tremdg-—4), (D — E) = (4=5)and(E - 4) — (5-4-1). Ifthe
dous importance as a national and international infrastructdightpaths are established using this routing, it is clear that the
for moving |arge volumes of data from one part of the g|0bf§ilure of the fiber link between the nodes 4 and 5 will discon-
to another. A significant number of papers addressing variod@ct the logical topology as the node E will lose its connection
aspects of survivability have appeared in the literature [2, 4-119, both the nodesi and D. However, this situation can be
12]. In a recent paper [7], Modiano and Narula-Tam introducéyoided by carrying out the edge mapping (routing of the light-
the notion ofsurvivable routingwhere the objective is to route Paths) in a slightly different way(A — B) — (1 - 2),(B —
the lightpaths (corresponding to the links of a logical topology)) — (2 —3),(C' = D) = (3 —4),(D — E) — (4 -5) and
in the physical topology in such a way, that failure of any sif£ — A4) = (5—3 —1). If this mapping (routing) is used, then
gle physical (optical fiber) link cannot disconnect the logicdpilure of any single physical link cannot disconnect the logical
network. As defined in [7], a routing is known aarvivable topology (ring). Thus it is clear that the way the lightpaths are
if the failure of any physical link leaves the (logical) networkouted has a tremendous impact on the survivability of the log-
connected. A somewhat similar problem was studied in [2al network. In this paper we examine the issues related to the
[10] where the objective was to support IP networks over WDIgXistence of a survivable routing of a logical ring in a physical
networks. network of arbitrary topology.

We illustrate the concept aiurvivable routingwith the help I the previous example, it was possible to find survivable
of an example given in [7]. Suppose that the logical topofouting just by changing the edge mapping and without chang-
ogy is a ring (figure 1a) and the physical topology is the neéf?d the node mapping. However, there exist instances where
work shown in figure 1b. The logical topology may be ema@n “incorrect’ node mapping creates an environment where
bedded in the physical topology in many different ways. Fdlo survivable routes can be found. The fO”OWing example
the embedding, the nodes of the logical topology first have Histrates the point. We consider mapping the same logical
be mapped onto the nodes of the physical topology and tHé@Rology (figure 1a) onto the same physical topology (figure

the links of the logical topology have to be mapped onto tHe), but this time around the nodes are mapped as follows:
A—5DB—2C —4D — 3,andE — 1. It can be ver-
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node mapping and as such survivable routes for a logical ridtfe;) N F'(e;) (i.e.,e € F(e;) N F(e;),e; # ej, then failure
cannot be found in such physical topologies. Survivable routee would disconnect the logical links ande;. SinceG, is a
for the logical ring in figure 1a cannot be found if the physicaing network, failure of the links; ande; would disconnedats;,
topology is as shown in figure 1c. contradicting the assumption thgt, F) is a survivable routing
It is clear from the previous example that survivable routder G; in G,. Thus allF'(e;)’s are pair-wise edge-disjoint. It is
for a logical ring can be found for some physical topologiesot difficult to check tha#'(e;) F'(ez) . . . F'(e,,) forms a closed
and cannot be found for some other topologies. In this pageail visiting each node of7; at least once.
we investigate the necessary and sufficient condition for the ex~— Suppose thatG, has a closed trail,w =

istence of survivable routes for a logical ring in any arbitrary(0)u(2)...u(m — 1), visiting each node at least once. Here,
physical topology. eachu(7) is a node of,,. It may be noted that for someand
J, u(i) may be equal tm( i) even though # j. Suppose that
Il. PROBLEM FORMULATION P(u(z) u(7)) denotes the path between the nod@s andu(j)

The physical topology of the network is represented by an
undirectedgraphG, = (V,, E,), whereV, is the set of nodes
andE, is the set ophysicallinks. Similarly, the logical topol- begin
ogy is represented by another undirected gréphk= (V;, E;), for(i:=0; i< m, i =i+1)
whereV] is the set of nodes anfg, is the set ofogical links. We mark(u(i)) :=0
assume thafi/,| = |V;|. The objective of the survivable rout-  f(vo) := u(0)
ing problemis to find a way to route (map) the logical topology mark(u(0)) :=1;
on the physical topology such that the logical topology remains index := 1;
connected inspite of the failure of any one single physical link. j :=1;

Now we construct a mapping, F').

In order to establish a logical link between the nodemnd while (j < n) do {n is the number of nodes i¥; }
t of the logical network, a lightpath needs to be established be- begin
tween the nodeg(s) and f(t) in the physical network, where while (mark(u(indez)) = 1) do
f(s) andf(t), are the images (or mappings) of the nodesnd index := index + 1,
t in the physical network. Such a lightpath may use a set of f(v;) = u(index)
physical links and some wavelengths on these links. Since the mark(u(v;)) = 1;
objective of this paper is to focus on the issues of a survivable index := index + 1;
design, as in [7], we assume that either a sufficient number of ji=j+1;

wavelengths or a sufficient number of wavelength converters end
are available, so that the issues related to wavelength continuityfor (i := 1; i < n; i := i+ 1)

can be ignored. F(e;) := P(f (vZ 1), f(vi));
We use the standard graph theoretical terminologies from [1]. F'(e,) := P(f(vn—1), f(v0));
end
I1l. SURVIVABLE ROUTING OF RING IN ARBITRARY We claim that(f, F) is a survivable routing. First, since
PHYSICAL TOPOLOGY w Visits each node of7, at least once,f() is a mapping
Let(f, F') denote a mapping between two graphs, whyeis from V; to V,,. Sincew is a trail, the way the functio#’() is
the node mappingy is the edge-to-path mapping. constructedF( i) N F(e;) = 0 for all i andj wheni # j.

Theorem 1:Let G, = (V,, E,) andG, = (V;, E;) represent Therefore, the failure of one link i@, will disconnect at most
the physical and the logical topology of the network respeene edge inG, leaving the logical network (ring) connected.
tively. If G, is a ring network, then there exists a survivabl@hus(f, F) is survivable.
routing forG; in G, if and only if G;, contains a closed trail
visiting each node at least once. As noted earlier aizuler touris a tour which traverses each
Proof: Suppose that the logical ring network is the cycle witedgeexactly once Since such a tour traverses each edge ex-
n nodes represented ase; viexvs - . . en—1Un—1€,vo SUCh that actly once, it must be traversing each node at least once. The
for1 < i < n — 1, the ends ok; arev;_; andv; and the end necessary and sufficient condition for a graph to have an Euler
of e, is v, andwy. Let(f, F) denote a mapping a¥, in G, touris given by the following theorem [1].
wheref (v;) is the mapping of the nodes 6f onto the nodesof ~ Theorem 2:A nonempty connected graph is eulerian if and
G, andF (e;) is the mapping of the edges 6f onto thepaths only if it has no nodes of odd degree.
of G, (paths may be of length one). As stated in theorem 1, it is possible to find a survivable rout-
— Suppose that there is a survivable routing@rin GG, ing for a logical ring network in a physical network of arbitrary
given by(f, F). Thenforalle; # e;, F(e;) N F(e;) = (0. This topology, if and only if the physical network, = (V,, E,)
is true because, if there was an edg#f the physical graph in contains a closed trail visiting each node at least once. Suppose
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thatG), = (V,, E,) is a subgraph of7, such that (i)l;, = V) Conversely, suppose th&t = (V, E) has a subgrapt’ =
andE, C E, andG, is eulerian. (V',E") such tha’’ = V', E' C E andG' has no node of odd

It is not difficult to verify thatG, = (V},, E,) contains a degree. Sinc€ is cubic graph all the nodes 6f are of degree
closed trail visiting each node at least once, if and only if su@) SinceG’ does not have any node with odd degree, all nodes
asubgrapldr;, of G, exists. From theorem 2 itis known th@, of G’ must be of degree 2. Since all nodes(¥fare of even
will be eulerian if and only iiiz}, is connected and has no nodelegree (2)G' has a Euler tour. Since all nodes Gf are of
with odd degree. It may be noted that the physical netwiyk degree 2, this Euler tour is also a Hamiltonian cycl&6fand
may or may not have such a subgra@f). Thus a survivable henceG. This proves the theorem.

routing for a logical ring network in a physical netwoi,,, Theorem 4:Survivable Routing of Ring Problem is NP-
of arbitrary topology exists if and only i, contains such a complete.
subgraph’J;. Proof: SRRP is NP-complete because SRRPC, a restricted ver-

Survivable Routing of Ring Problem (SRRP) sion of SRRP is NP-complete.

Instance:A connected undirected gragh= (V, E).
Question: DoesG have a subgrapty’ = (V', E'), such that IV. ALGORITHM FOR SURVIVABLE ROUTING
V = V'andE' C E, such that’ is connected and has no

. In this section, we describe an algorithm for finding surviv-
node with an odd degree.

able routes, if they exist, in the physical netwark. To this

We prove that SRRP is NP-complete by restricting it to cubRnd, we first prove a theorem.
graphs (it may be recalled that a graph is cattebicif all the Theorem 5:Suppose that, = (V), E,) is the physical
nodes in the graph are of degree 3) topology. Suppose th&t, (S C E,) is an edge-minimal subset

) ) _ ) _ of £, such thaty), = (V,,, E, — S) is Eulerian. LetG's denote
Survivable Routing of ng Problem in Cubic Graph (SRRPG},¢ graph formed by the set of edggsogether with the corre-
Instanpe:A connected undirected cubic gragh= (V, E). sponding nodes. For all suchC E,, G's can be decomposed
Question:DoesG have a subgrapty’ = (V', E'), such that . . . . .
V — V' andE' C E. such thae” is connected and has no|nt0 paths with both endppmts being odd degree nod_ésgm
node with an odd_deg,ree Proof: In G, pair (arbitrarily) up odd degree vertices and

' connect each pair by an artificial edge, get the Euler tour of the

Hamiltonian Cycle Problem in Planar, Cubic and Triply con+esultant graph, and delete the artificial edges from the tour to
nected Graph (HCPPCT) get a set of paths each of which connect two odd degree vertices
Instance:A connected undirected gragh= (V, E), which is of G5. Please note that each odd degree vert€Xjimust have
(i) planar, (i) cubic and (iii) triply connected (i.e., deletion ofan odd degree iG7,. Therefore, each of these paths connects
any two nodes leaves the graph connected). two odd degree vertices {f,,.
Question:DoesG contain a Hamiltonian Cycle? The above theorem can be utilized to develop an algorithm

. . i for determining if a survivable route for the logical ring can be
Ithas been proven in [3] that HCPPCT is NP-complete. found in the physical topolog§,. From the earlier theorems,

Hamiltonian Cycle Problem in Cubic Graph (HCPC) we know that ifG,, has only nodes of even degree, then sur-
Instanpe:A connected qndirecteq cupic graph= (V, E). vivable routes exist and they can be found fairly easilyGf
Question:DoesG contain a Hamiltonian Cycle? has nodes of both even and odd degree, then existence of survi-

HCPC is NP-complete because HCPPCT, a restricted vers@tﬂe routes will depend on the existence of a subset of edges
of HCPC is NP-complete C E,, whose removal fronds,,, would make the remaining

graph eulerian. We now discuss a method to test the existence

Theorem 3:Survivable Routing of Ring Problem in Cubicof such a sef. The algorithm has two phases.
Graph is NP-complete.
Proof: Clearly, SRRPC is in NP as it is fairly simple to check if
G' is connected and has no nodes with odd degree. A. Phasell

We will give a transformation from the known NP-complete It is known that in any graph the number of nodes with odd
problem HCPC. We take the instance of SRRPC to be the sadiggree is even [1]. Supposg, contains2k nodes of odd de-
as the instance of HCPC. Suppose that this instancg is gree. From the above theorem, we know that if an edge mini-
(V, E). We claim that has a Hamiltonian cycle if and only if mal subset of E, exists, whose removal makes the remaining
there is subgrapt’ = (V', E') in G that is connected and hasgraph eulerian, then this st together with the corresponding
no node with odd degree. nodes makes a forest. It is also known that this forest can be

Suppose thaté = (V, E) contains a Hamiltonian cycle. decomposed inté paths with the endpoints of the paths being
Construct a subgrap’ = (V',E’) as follows: V' = V  the nodes with odd degree,.
and E' is the set of edges that make up the Hamiltonian cy- To illustrate the execution of our algorithm, we choose a non-
cle. Clearly,G’ is connected and has no node with odd degrgdanar version of ARPANET with 20 nodes and 32 links [11]
(all nodes ofG' have degree 2). shown in figure 2. In this example, the following set of nodes
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have odd degreé], 2, 3,4,5,6,7,9,11,12,13,15,16,17,18, [ Problem node] Solution Edges [ Terminal Node|

20}. We refer to these nodes pmoblemnodes. The “problem” 1 2! 2
associated with these nodes (i.e., their odd degree) can be re- 1 et 6
solved by removal of an edge incident on these nodes. Suppose % Zz i
thatv is a node of odd degree @, and it is adjacent to other > P 5
nodesu;,us,...,u:. If one of these nodes;, (1 < i < t) 3 o 7
is also of odd degree, then removal of the edges (;) will 3 €10, €13 9
resolve the “problem” associated with both the nodesidu;. 3 €10, €16 12
However, if the nodey; is of even degree, then removal of the 3 €10, €15, €11 /
edge ¢ — u;) will resolve the problem associated with nage 3 €10, €15, €14 9
but will introduce a new problem at node. In a sense, the g 210’215’2”’226 ig
removal of this edge merely shifts the problem from node 3 613: eiz: 61:: e 16
nodeu;. In this case, we should examine all the adjacent nodes 4 es 5
of u; (exceptw) and remove one such edge to “fix” the problem 4 ers 11
at nodeu;. The process continues till we find an edge whose 5 €6 6
removal does not introduce a new “problem” at another node. g 61168614 ;
7 e11,€e15, €13 9
7 €11,€15,€16 12
7 €11,€17,€31 17
In the network of figure 2, node 3 is a “problem” node ; 11, 17, €26 ig
because it is a node of odd degree. We can “fix” the problem 5 i, z;g’ cn 1
at node 3 by removing any one of the edggsey or e1p. The 9 e, €17, ea1 17
removal of the edgey fixes node 3's problem and does not 9 eid, €17, €26 20
introduce any new problem. In fact, in addition to solving node 9 €1a, €17, €27 16
3’s problem it also “solves” node 7’s problem. Therefore, the 9 €14, €15, €16 12
removal of the edge, is a “complete solution” for the nodes 11 €18 13
3 and 7. However, if instead afy, ey is removed then it 12 €20 18
. 12 €19, €21 18
solves the problem at node 3 but introduces a problem at node 12 e10. €20 15
8. Thus removal of the edgg is only a “partial solution” to 12 €19, €32 20
the problem at node 3. To obtain a complete solution from this 13 €23 15
partial solution and to fix the problem at node 8 introduced by 13 €24 17
the deletion of the edge;y, we need to delete one additional 15 €28 16
edge at node 8. I¢,3 is deleted, then it solves the problem 16 C22 .
. 16 €27, €26 20
at node 8 as well as at node 9 and does not introduce any 16 eor Car 17
new problem. Thus the removal of the set of edfes, e15} 17 6;1 19
is a complete solution for the nodes 3 and 9. Similarly, the 17 es 20
removal of the set of edgels;o,e16} IS a complete solution TABLE |

for the nodes 3 and 12. H5 is removed, after the removal of
e10, the problem propagates to node 10. A complete solution
can be derived by extending the partial solution obtained by
the path formed by, ande;s. The set of complete solu-
tions obtained by extending the partial solutifno, 5} are B Phasell

{{e10,¢€15,e11(7)}, {e10, €15, €14(9) }, {€e10, €15, €17, €26(20) }, Once the set of “complete solutions” associated with a pair of
{e10, €15, e17,e31(17)}, {e10, €15, €17, e27(16) } }. The number nodes is obtained, we try to combine them to obtain complete
within () indicates the “other” node (besides node 3), whosmlution to all the problem nodes. If such a solution can be
problem is “solved” by the removal of the corresponding set édund (the solution is a set of edg#@sindicated earlier), then
edges. We refer to this node as tieeminal node As a first survivable routes for the ring in the given physical topology can
step towards finding the survivable route, we first constrube found. Otherwise, survivable routing for the ringGf is

all such “complete solutions”. For the graph of figure 2, almpossible. To demonstrate the combination process, we again
such complete solutions are shown in table I. The complaise the example of figure 2. As noted earlier, the problem nodes
solutions can be obtained by performidgpth first searcton in this example ard1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16,
the graphGG,. Please note that to avoid redundancy, we only7, 18, 2G. From the set of complete solutions in table I, we
list the complete solutions, where the index of the probleohoose one solution after another till all the problem nodes are
node is less than the index of the terminal node. “fixed”. The process constructs the $gif it exists) and works

2774



4 13 €33
e €12 €15 €27
e 11
2 5 €23 16
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€0 15
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9 €17 2
e.
1 6, 6 g C20¢14
e, e.
s e 21
U ! 10 €
e 18
2 / e /615 €20
3& > €16 12

Fig. 2. Euler TourinG}, = (Vp, Ep — S)

as follows. The se$ is empty initially.

Attempt 1:Include the edge; in S. This fixes the problem

We continue with the backtracking process, till we find
a feasible solution or conclude that no feasible solution ex-
ists. In the example of figure 2, during the sixth attempt of
the backtracking process we find the following feasible solu-
tion: {67, €4,€9,€12, (614, €17, 627), €90, €23, 625}. If this set of
edges is removed, all the nodes will be of even degree and as
such an Euler tour can be constructed in the new graph. The
Euler tour is shown in figure 2. Thetouri2 &1 - 3 —

8§ >12—-14—-518—-16—>15—-14—-20— 19 —» 17 —
1325159282102 7—-6—>5—>4—2).

Suppose that the nodes of a 20 node logical ring are labeled
from A to T', with the logical edges going from — B, B — C,

..., S—=T,T — A. Then the following mapping of the nodes of
the logical graph to the nodes of the physical graph will create
surviable routes A -+ 2,B — 1,C —» 3,D —» 8, FE —
12,F — 14,G — 18,H — 16,1 — 15,J — 20,K —
19,L - 17, M — 13,N — 11,0 — 9,P — 10,Q —
7,R—6,S—5T — 4.

for nodes 1 and 2. Mark these nodes as fixed. Since the next

V. CONCLUSION

higher indexed node that needs fixing is node 3, we includein this paper we have studied the issues related to survivable
the edgeey in S. Inclusion of this node fixes the problem forrouting of a logical ring in a physical network of arbitrary topol-
nodes 3 and 7. Mark these nodes as fixed. To fix the next higlagfy. There are three important contributions of paper on this
indexed problem node (4) we choasefor inclusion inS. This  problem. First, we have given a necessary and sufficient con-
fixes the nodes 4 and 5. Mark these nodes as fixed. Now to diXion for the existence of survivable routes. Second, we have
the next higher indexed problem node (6) we need to choasifown the problem of determining whether or not the condition
es which would fix the problem of node 7. But the problems satisfied by an arbitrary physical topology is NP-complete.
of node 7 was already fixed when we included the edg®  Third, we have presented an algorithm for finding the surviv-
S. As such we cannot choose now, and these set of edgesable routes, if they exist in the physical network. We are cur-
{e1, e9, €5} cannot lead to a complete solution for all the nodegently investigating the issues related to the existence of sur-

Because of this failure to find a solution, we backtrack angdvable routes when the logical topology also has an arbitrary

make a second attempt.

Attempt 2: This time around, after choosing andeg, in-
stead ok;, we choose;», which fixes the problem at node 11. [1]
Next, to fix the problem at node 5, we choasewhich also
fixes the problem at node 6. Now, the unfixed problem nod
with the smallest index is 9 . We cannot choose the edgéo 3]
fix node 9's problem because it would also have solved problem
at node 11. However, the problem at node 11 is already solves
when we chose the edgg,. Therefore, instead of choosing
es0, we choose the st 4,17, €31}, which fixes node 17. To [5]
fix the problem at node 12, we choasg which also fixes the
problem at node 18. To fix the problem at node 13, we choodél
e23 Which also fixes the problem at node 15. To fix the proby,
lem at node 16, we cannot choase because the problem with
its terminal node (18) was already fixed by;. Therefore, we
choose the edge sék,7, ex6}, Which fixes the node 20. If
={e1,e9, €12, €6, (€14, €17,€31), €20, €23, (€27, €26) }, the set of
edges constructed by this process is removed from the graph
G, no nodes will have an odd degree in the remaining graph.
However, if this set of edges are removed, the remaining gralphl
will also bedisconnectedbecause node 19 will have all its in- 12]
cident edges removed. Accordingly, tisiss also not a feasible
solution.

(8]
&l
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