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Abstract—In this paper we consider the problem of routing the
lightpaths of a logical topology of a WDM network on an arbi-
trary physical topology, such that the logical topology remains con-
nected even after the failure of a physical link. We focus our atten-
tion on the ring interconnection as the logical topology because
it is widely used in many protection schemes. We first establish
the necessary and sufficient condition for a ring logical topology to
withstand failure of a single physical link. Next we show that the
testing of this necessary and sufficient condition is an NP-complete
problem. Finally, we give an algorithm for testing the necessary
and sufficient condition and demonstrate the execution of the al-
gorithm with the help of an example.

I. I NTRODUCTION

Survivabilty of high bandwidth optical networks has become
important area of research in recent times due to its tremen-
dous importance as a national and international infrastructure
for moving large volumes of data from one part of the globe
to another. A significant number of papers addressing various
aspects of survivability have appeared in the literature [2, 4-10,
12]. In a recent paper [7], Modiano and Narula-Tam introduced
the notion ofsurvivable routing, where the objective is to route
the lightpaths (corresponding to the links of a logical topology)
in the physical topology in such a way, that failure of any sin-
gle physical (optical fiber) link cannot disconnect the logical
network. As defined in [7], a routing is known assurvivable
if the failure of any physical link leaves the (logical) network
connected. A somewhat similar problem was studied in [2],
[10] where the objective was to support IP networks overWDM
networks.
We illustrate the concept ofsurvivable routingwith the help

of an example given in [7]. Suppose that the logical topol-
ogy is a ring (figure 1a) and the physical topology is the net-
work shown in figure 1b. The logical topology may be em-
bedded in the physical topology in many different ways. For
the embedding, the nodes of the logical topology first have to
be mapped onto the nodes of the physical topology and then
the links of the logical topology have to be mapped onto the

A. Sen is with the Dept. of Computer Science and Engineering, Arizona State
University, Tempe, AZ 85287, e-mail: asen@asu.edu.
Bin Hao is with the Dept. of Computer Science and Engineering, Arizona

State University, e-mail: binhao@asu.edu.
Bao Hong Shen is with the Dept. of Computer Science and Engineering,

Arizona State University, e-mail: bao@asu.edu.
Guohui Lin is with the Dept. of Computing Science, University of Alberta,

Edmonton, Canada, T6G 2E8, e-mail: ghlin@cs.ualberta.ca.

A

B

CD

E

1

23

4

5

1

2

3

4 5

(a) (b) (c)

Fig. 1. Logical and physical topologies of WDM networks

pathsin the physical topology. Consider the following embed-
ding of the logical topology into the physical topology shown
in figures 1a and 1b respectively. The nodes are mapped as
A ! 1; B ! 2; C ! 3; D ! 4; E ! 5, and the edges are
mapped as(A�B)! (1�2); (B�C)! (2�3); (C�D)!
(3� 4); (D�E)! (4� 5) and(E�A)! (5� 4� 1). If the
lightpaths are established using this routing, it is clear that the
failure of the fiber link between the nodes 4 and 5 will discon-
nect the logical topology as the node E will lose its connection
to both the nodesA andD. However, this situation can be
avoided by carrying out the edge mapping (routing of the light-
paths) in a slightly different way:(A � B) ! (1 � 2); (B �
C) ! (2 � 3); (C �D) ! (3 � 4); (D � E) ! (4 � 5) and
(E �A)! (5� 3� 1). If this mapping (routing) is used, then
failure of any single physical link cannot disconnect the logical
topology (ring). Thus it is clear that the way the lightpaths are
routed has a tremendous impact on the survivability of the log-
ical network. In this paper we examine the issues related to the
existence of a survivable routing of a logical ring in a physical
network of arbitrary topology.
In the previous example, it was possible to find survivable

routing just by changing the edge mapping and without chang-
ing the node mapping. However, there exist instances where
an “incorrect” node mapping creates an environment where
no survivable routes can be found. The following example
illustrates the point. We consider mapping the same logical
topology (figure 1a) onto the same physical topology (figure
1b), but this time around the nodes are mapped as follows:
A ! 5; B ! 2; C ! 4; D ! 3, andE ! 1. It can be ver-
ified that no survivable routes between the nodes can be found
in this case. These two examples show that survivable routes
may be found if the nodes of the logical topology are mapped
“correctly” onto the nodes of the physical topology and may
not be found in case they are mapped “incorrectly”. However,
for certain physical topologies there may not be any “correct”
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node mapping and as such survivable routes for a logical ring
cannot be found in such physical topologies. Survivable routes
for the logical ring in figure 1a cannot be found if the physical
topology is as shown in figure 1c.
It is clear from the previous example that survivable routes

for a logical ring can be found for some physical topologies
and cannot be found for some other topologies. In this paper
we investigate the necessary and sufficient condition for the ex-
istence of survivable routes for a logical ring in any arbitrary
physical topology.

II. PROBLEM FORMULATION

The physical topology of the network is represented by an
undirectedgraphGp = (Vp; Ep), whereVp is the set of nodes
andEp is the set ofphysicallinks. Similarly, the logical topol-
ogy is represented by another undirected graphGl = (Vl; El),
whereVl is the set of nodes andEl is the set oflogical links. We
assume thatjVpj = jVlj. The objective of the survivable rout-
ing problem is to find a way to route (map) the logical topology
on the physical topology such that the logical topology remains
connected inspite of the failure of any one single physical link.
In order to establish a logical link between the nodess and

t of the logical network, a lightpath needs to be established be-
tween the nodesf(s) andf(t) in the physical network, where
f(s) andf(t), are the images (or mappings) of the nodess and
t in the physical network. Such a lightpath may use a set of
physical links and some wavelengths on these links. Since the
objective of this paper is to focus on the issues of a survivable
design, as in [7], we assume that either a sufficient number of
wavelengths or a sufficient number of wavelength converters
are available, so that the issues related to wavelength continuity
can be ignored.
We use the standard graph theoretical terminologies from [1].

III. SURVIVABLE ROUTING OFRING IN ARBITRARY
PHYSICAL TOPOLOGY

Let (f; F ) denote a mapping between two graphs, wheref is
the node mapping,F is the edge-to-path mapping.

Theorem 1:LetGp = (Vp; Ep) andGl = (Vl; El) represent
the physical and the logical topology of the network respec-
tively. If Gl is a ring network, then there exists a survivable
routing forGl in Gp if and only if Gp contains a closed trail
visiting each node at least once.

Proof: Suppose that the logical ring network is the cycle with
n nodes represented asv0e1v1e2v2 : : : en�1vn�1env0 such that
for 1 � i � n � 1, the ends ofei arevi�1 andvi and the end
of en is vn andv0. Let (f; F ) denote a mapping ofGl in Gp,
wheref(vi) is the mapping of the nodes ofGl onto the nodes of
Gp andF (ei) is the mapping of the edges ofGl onto thepaths
of Gp (paths may be of length one).

=) Suppose that there is a survivable routing forGl in Gp

given by(f; F ). Then for allei 6= ej , F (ei)\F (ej) = ;. This
is true because, if there was an edgee of the physical graph in

F (ei) \ F (ej) (i.e., e 2 F (ei) \ F (ej); ei 6= ej , then failure
of e would disconnect the logical linksei andej . SinceGl is a
ring network, failure of the linksei andej would disconnectGl,
contradicting the assumption that(f; F ) is a survivable routing
for Gl in Gp. Thus allF (ei)’s are pair-wise edge-disjoint. It is
not difficult to check thatF (e1)F (e2) : : : F (en) forms a closed
trail visiting each node ofGl at least once.
(= Suppose thatGp has a closed trail, w =

u(0)u(2):::u(m � 1), visiting each node at least once. Here,
eachu(i) is a node ofGp. It may be noted that for somei and
j, u(i) may be equal tou(j) even thoughi 6= j. Suppose that
P (u(i); u(j)) denotes the path between the nodesu(i) andu(j)
onw.
Now we construct a mapping(f; F ).

begin
for (i := 0; i < m; i := i+ 1)

mark(u(i)) := 0;
f(v0) := u(0)
mark(u(0)) := 1;
index := 1;
j := 1;
while (j < n) dofn is the number of nodes inGlg

begin
while (mark(u(index)) = 1) do

index := index+ 1;
f(vj) := u(index)
mark(u(vj)) := 1;
index := index+ 1;
j := j + 1 ;

end
for (i := 1; i < n; i := i+ 1)

F (ei) := P (f(vi�1); f(vi));
F (en) := P (f(vn�1); f(v0));

end

We claim that(f; F ) is a survivable routing. First, since
w visits each node ofGp at least once,f() is a mapping
from Vl to Vp. Sincew is a trail, the way the functionF () is
constructed,F (ei) \ F (ej) = ; for all i andj when i 6= j.
Therefore, the failure of one link inGp will disconnect at most
one edge inGl, leaving the logical network (ring) connected.
Thus(f; F ) is survivable.

As noted earlier anEuler tour is a tour which traverses each
edgeexactly once. Since such a tour traverses each edge ex-
actly once, it must be traversing each node at least once. The
necessary and sufficient condition for a graph to have an Euler
tour is given by the following theorem [1].

Theorem 2:A nonempty connected graph is eulerian if and
only if it has no nodes of odd degree.
As stated in theorem 1, it is possible to find a survivable rout-

ing for a logical ring network in a physical network of arbitrary
topology, if and only if the physical networkGp = (Vp; Ep)
contains a closed trail visiting each node at least once. Suppose
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thatG0

p = (V 0

p ; E
0

p) is a subgraph ofGp such that (i)Vp = V 0

p

andE0

p � Ep andG0

p is eulerian.
It is not difficult to verify thatGp = (Vp; Ep) contains a

closed trail visiting each node at least once, if and only if such
a subgraphG0

p ofGp exists. From theorem2 it is known thatG0

p

will be eulerian if and only ifG0

p is connected and has no node
with odd degree. It may be noted that the physical networkGp

may or may not have such a subgraphG0

p. Thus a survivable
routing for a logical ring network in a physical network,Gp,
of arbitrary topology exists if and only ifGp contains such a
subgraphG0

p.

Survivable Routing of Ring Problem (SRRP)
Instance:A connected undirected graphG = (V;E).
Question:DoesG have a subgraphG0 = (V 0; E0), such that
V = V 0 andE0 � E, such thatG0 is connected and has no
node with an odd degree.

We prove that SRRP is NP-complete by restricting it to cubic
graphs (it may be recalled that a graph is calledcubic if all the
nodes in the graph are of degree 3)

Survivable Routing of Ring Problem in Cubic Graph (SRRPC)
Instance:A connected undirected cubic graphG = (V;E).
Question:DoesG have a subgraphG0 = (V 0; E0), such that
V = V 0 andE0 � E, such thatG0 is connected and has no
node with an odd degree.

Hamiltonian Cycle Problem in Planar, Cubic and Triply con-
nected Graph (HCPPCT)
Instance:A connected undirected graphG = (V;E), which is
(i) planar, (ii) cubic and (iii) triply connected (i.e., deletion of
any two nodes leaves the graph connected).
Question:DoesG contain a Hamiltonian Cycle?

It has been proven in [3] that HCPPCT is NP-complete.

Hamiltonian Cycle Problem in Cubic Graph (HCPC)
Instance:A connected undirected cubic graphG = (V;E).
Question:DoesG contain a Hamiltonian Cycle?

HCPC is NP-complete because HCPPCT, a restricted version
of HCPC is NP-complete.

Theorem 3:Survivable Routing of Ring Problem in Cubic
Graph is NP-complete.
Proof: Clearly, SRRPC is in NP as it is fairly simple to check if
G0 is connected and has no nodes with odd degree.
We will give a transformation from the known NP-complete

problem HCPC. We take the instance of SRRPC to be the same
as the instance of HCPC. Suppose that this instance isG =
(V;E). We claim thatG has a Hamiltonian cycle if and only if
there is subgraphG0 = (V 0; E0) in G that is connected and has
no node with odd degree.
Suppose thatG = (V;E) contains a Hamiltonian cycle.

Construct a subgraphG0 = (V 0; E0) as follows: V 0 = V

andE0 is the set of edges that make up the Hamiltonian cy-
cle. Clearly,G0 is connected and has no node with odd degree
(all nodes ofG0 have degree 2).

Conversely, suppose thatG = (V;E) has a subgraphG0 =
(V 0; E0) such thatV 0 = V ,E0 � E andG0 has no node of odd
degree. SinceG is cubic graph all the nodes ofG are of degree
3. SinceG0 does not have any node with odd degree, all nodes
of G0 must be of degree 2. Since all nodes ofG0 are of even
degree (2),G0 has a Euler tour. Since all nodes ofG0 are of
degree 2, this Euler tour is also a Hamiltonian cycle ofG0 and
henceG. This proves the theorem.

Theorem 4:Survivable Routing of Ring Problem is NP-
complete.
Proof: SRRP is NP-complete because SRRPC, a restricted ver-
sion of SRRP is NP-complete.

IV. A LGORITHM FORSURVIVABLE ROUTING

In this section, we describe an algorithm for finding surviv-
able routes, if they exist, in the physical networkGp. To this
end, we first prove a theorem.

Theorem 5:Suppose thatGp = (Vp; Ep) is the physical
topology. Suppose thatS, (S � Ep) is an edge-minimal subset
of Ep such thatG0

p = (Vp; Ep � S) is Eulerian. LetGS denote
the graph formed by the set of edgesS together with the corre-
sponding nodes. For all suchS � Ep, GS can be decomposed
into paths with both endpoints being odd degree nodes inGp.

Proof: In Gs, pair (arbitrarily) up odd degree vertices and
connect each pair by an artificial edge, get the Euler tour of the
resultant graph, and delete the artificial edges from the tour to
get a set of paths each of which connect two odd degree vertices
ofGs. Please note that each odd degree vertex inGs must have
an odd degree inGp. Therefore, each of these paths connects
two odd degree vertices inGp.
The above theorem can be utilized to develop an algorithm

for determining if a survivable route for the logical ring can be
found in the physical topologyGp. From the earlier theorems,
we know that ifGp has only nodes of even degree, then sur-
vivable routes exist and they can be found fairly easily. IfGp

has nodes of both even and odd degree, then existence of survi-
able routes will depend on the existence of a subset of edges
S � Ep, whose removal fromGp, would make the remaining
graph eulerian. We now discuss a method to test the existence
of such a setS. The algorithm has two phases.

A. Phase I

It is known that in any graph the number of nodes with odd
degree is even [1]. SupposeGp contains2k nodes of odd de-
gree. From the above theorem, we know that if an edge mini-
mal subsetS of Ep exists, whose removal makes the remaining
graph eulerian, then this setS, together with the corresponding
nodes makes a forest. It is also known that this forest can be
decomposed intok paths with the endpoints of the paths being
the nodes with odd degree inGp.
To illustrate the execution of our algorithm, we choose a non-

planar version of ARPANET with 20 nodes and 32 links [11]
shown in figure 2. In this example, the following set of nodes
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have odd degree,f1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18,
20g. We refer to these nodes asproblemnodes. The “problem”
associated with these nodes (i.e., their odd degree) can be re-
solved by removal of an edge incident on these nodes. Suppose
thatv is a node of odd degree inGp and it is adjacent tot other
nodesu1; u2; : : : ; ut. If one of these nodesui; (1 � i � t)
is also of odd degree, then removal of the edges (v � ui) will
resolve the “problem” associated with both the nodesv andui.
However, if the nodeui is of even degree, then removal of the
edge (v � ui) will resolve the problem associated with nodev,
but will introduce a new problem at nodeui. In a sense, the
removal of this edge merely shifts the problem from nodev to
nodeui. In this case, we should examine all the adjacent nodes
of ui (exceptv) and remove one such edge to “fix” the problem
at nodeui. The process continues till we find an edge whose
removal does not introduce a new “problem” at another node.

In the network of figure 2, node 3 is a “problem” node
because it is a node of odd degree. We can “fix” the problem
at node 3 by removing any one of the edgese2; e9 or e10. The
removal of the edgee9 fixes node 3’s problem and does not
introduce any new problem. In fact, in addition to solving node
3’s problem it also “solves” node 7’s problem. Therefore, the
removal of the edgee9 is a “complete solution” for the nodes
3 and 7. However, if instead ofe9, e10 is removed then it
solves the problem at node 3 but introduces a problem at node
8. Thus removal of the edgee10 is only a “partial solution” to
the problem at node 3. To obtain a complete solution from this
partial solution and to fix the problem at node 8 introduced by
the deletion of the edgee10, we need to delete one additional
edge at node 8. Ife13 is deleted, then it solves the problem
at node 8 as well as at node 9 and does not introduce any
new problem. Thus the removal of the set of edgesfe10; e13g
is a complete solution for the nodes 3 and 9. Similarly, the
removal of the set of edgesfe10; e16g is a complete solution
for the nodes 3 and 12. Ife15 is removed, after the removal of
e10, the problem propagates to node 10. A complete solution
can be derived by extending the partial solution obtained by
the path formed bye10 and e15. The set of complete solu-
tions obtained by extending the partial solutionfe10; e15g are
ffe10; e15; e11(7)g; fe10; e15; e14(9)g; fe10; e15; e17; e26(20)g;
fe10; e15; e17; e31(17)g; fe10; e15; e17; e27(16)gg. The number
within () indicates the “other” node (besides node 3), whose
problem is “solved” by the removal of the corresponding set of
edges. We refer to this node as theterminal node. As a first
step towards finding the survivable route, we first construct
all such “complete solutions”. For the graph of figure 2, all
such complete solutions are shown in table I. The complete
solutions can be obtained by performingdepth first searchon
the graphGp. Please note that to avoid redundancy, we only
list the complete solutions, where the index of the problem
node is less than the index of the terminal node.

Problem node Solution Edges Terminal Node
1 e1 2
1 e7 6
1 e2 3
2 e3 4
2 e4 5
3 e9 7
3 e10; e13 9
3 e10; e16 12
3 e10; e15; e11 7
3 e10; e15; e14 9
3 e10; e15; e17; e26 20
3 e10; e15; e17; e31 17
3 e10; e15; e17; e27 16
4 e5 5
4 e12 11
5 e6 6
6 e8 7
7 e11; e14 9
7 e11; e15; e13 9
7 e11; e15; e16 12
7 e11; e17; e31 17
7 e11; e17; e26 20
7 e11; e17; e27 16
9 e30 11
9 e14; e17; e31 17
9 e14; e17; e26 20
9 e14; e17; e27 16
9 e14; e15; e16 12
11 e18 13
12 e20 18
12 e19; e21 18
12 e19; e29 15
12 e19; e32 20
13 e23 15
13 e24 17
15 e28 16
16 e22 18
16 e27; e26 20
16 e27; e31 17
17 e31 19
17 e25 20

TABLE I

B. Phase II

Once the set of “complete solutions” associated with a pair of
nodes is obtained, we try to combine them to obtain complete
solution to all the problem nodes. If such a solution can be
found (the solution is a set of edgesS indicated earlier), then
survivable routes for the ring in the given physical topology can
be found. Otherwise, survivable routing for the ring inGp is
impossible. To demonstrate the combination process, we again
use the example of figure 2. As noted earlier, the problem nodes
in this example aref1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16,
17, 18, 20g. From the set of complete solutions in table I, we
choose one solution after another till all the problem nodes are
“fixed”. The process constructs the setS (if it exists) and works
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Fig. 2. Euler Tour inG0

p = (Vp; Ep � S)

as follows. The setS is empty initially.

Attempt 1:Include the edgee1 in S. This fixes the problem
for nodes 1 and 2. Mark these nodes as fixed. Since the next
higher indexed node that needs fixing is node 3, we include
the edgee9 in S. Inclusion of this node fixes the problem for
nodes 3 and 7. Mark these nodes as fixed. To fix the next higher
indexed problem node (4) we choosee5 for inclusion inS. This
fixes the nodes 4 and 5. Mark these nodes as fixed. Now to fix
the next higher indexed problem node (6) we need to choose
e8 which would fix the problem of node 7. But the problem
of node 7 was already fixed when we included the edgee9 in
S. As such we cannot choosee8 now, and these set of edges
fe1; e9; e5g cannot lead to a complete solution for all the nodes.
Because of this failure to find a solution, we backtrack and

make a second attempt.

Attempt 2:This time around, after choosinge1 ande9, in-
stead ofe5, we choosee12, which fixes the problem at node 11.
Next, to fix the problem at node 5, we choosee6 which also
fixes the problem at node 6. Now, the unfixed problem node
with the smallest index is 9 . We cannot choose the edgee30 to
fix node 9’s problem because it would also have solved problem
at node 11. However, the problem at node 11 is already solved
when we chose the edgee12. Therefore, instead of choosing
e30, we choose the setfe14; e17; e31g, which fixes node 17. To
fix the problem at node 12, we choosee20 which also fixes the
problem at node 18. To fix the problem at node 13, we choose
e23 which also fixes the problem at node 15. To fix the prob-
lem at node 16, we cannot choosee22 because the problemwith
its terminal node (18) was already fixed bye20. Therefore, we
choose the edge setfe27; e26g, which fixes the node 20. IfS
= fe1; e9; e12; e6; (e14; e17; e31); e20; e23; (e27; e26)g, the set of
edges constructed by this process is removed from the graph
Gp, no nodes will have an odd degree in the remaining graph.
However, if this set of edges are removed, the remaining graph
will also bedisconnected, because node 19 will have all its in-
cident edges removed. Accordingly, thisS is also not a feasible
solution.

We continue with the backtracking process, till we find
a feasible solution or conclude that no feasible solution ex-
ists. In the example of figure 2, during the sixth attempt of
the backtracking process we find the following feasible solu-
tion: fe7; e4; e9; e12; (e14; e17; e27); e20; e23; e25g. If this set of
edges is removed, all the nodes will be of even degree and as
such an Euler tour can be constructed in the new graph. The
Euler tour is shown in figure 2. The tour is: (2 ! 1 ! 3 !
8! 12! 14! 18! 16! 15! 14! 20! 19! 17!
13! 11! 9! 8! 10! 7! 6! 5! 4! 2).
Suppose that the nodes of a 20 node logical ring are labeled

fromA to T , with the logical edges going fromA�B,B�C,
: : :, S�T , T �A. Then the following mapping of the nodes of
the logical graph to the nodes of the physical graph will create
surviable routes. A ! 2; B ! 1; C ! 3; D ! 8; E !
12; F ! 14; G ! 18; H ! 16; I ! 15; J ! 20;K !
19; L ! 17;M ! 13; N ! 11; O ! 9; P ! 10; Q !
7; R! 6; S ! 5; T ! 4.

V. CONCLUSION

In this paper we have studied the issues related to survivable
routing of a logical ring in a physical network of arbitrary topol-
ogy. There are three important contributions of paper on this
problem. First, we have given a necessary and sufficient con-
dition for the existence of survivable routes. Second, we have
shown the problem of determining whether or not the condition
is satisfied by an arbitrary physical topology is NP-complete.
Third, we have presented an algorithm for finding the surviv-
able routes, if they exist in the physical network. We are cur-
rently investigating the issues related to the existence of sur-
vivable routes when the logical topology also has an arbitrary
structure.
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