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Abstract

We analyze a canonical principal-agent problem with both moral hazard and adverse selec-

tion. We derive sufficient conditions for a menu of contracts to be feasible. We then provide

a method of solution, which we call decoupling. It consists of first minimizing the cost of

implementing any given action at any given surplus for any given type in a pure moral hazard

problem, and then use the resulting cost function as an input to a pure adverse-selection prob-

lem. We show broad classes of primitives under which the solution to this radically simplified

program is indeed optimal in the full problem. Decoupling has powerful implications for the

structure of optimal menus. We illustrate our results in the context of an insurance market.
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1 Introduction

In many settings of interest, both screening and moral hazard are at play. A firm wants workers

to self identify as more or less able, and to tailor incentives and effort accordingly. An insurance

company wants to tailor the trade-off between risk sharing and the incentive to take care to the

privately known riskiness of the customer. An investor wants an entrepreneur to both reveal what

she knows about the quality of the project and choose an appropriate level of effort. In each of

these settings, an optimal contract needs to both elicit the agent’s type and provide him with

incentives to take a suitable action for that type.

Although the design of contracts under either pure adverse selection or pure moral hazard is

well understood, little is known about the case where the two of them are present simultaneously,

especially when the agent is risk averse.1 This is because the problem is innately complicated.

In each of the pure cases, the set of deviations for the agent is one dimensional. But here, an

agent can “double deviate” by first misrepresenting his type and then choosing an action level

other than the one recommended for the type announced. Hence, unlike the adverse selection

case, where a sweeping incentive compatibility characterization exists (Mirrlees (1975), Myerson

(1981)), or the moral hazard case, where the first-order approach (Rogerson (1985), Jewitt (1988))

drastically simplifies the incentive constraints, there is no known analogous simplification in the

combined case that handles the myriad of deviations available. The central purpose of this paper

is to provide and explore one such simplification.

We analyze optimal contracts with adverse selection and moral hazard in a canonical principal-

agent model. A risk-averse agent has a type reflecting his disutility of taking an unobservable

action. A signal is generated that depends stochastically on the action of the agent. Both the

type of the agent and his action lie in a continuum. A mechanism recommends an action for each

announced type, and compensates the agent based on his announced type and the realization

of the signal. Thus, the agent, by announcing his type, is effectively choosing over a menu of

incentive schemes. The problem facing the principal is to maximize expected profit subject to the

willingness of the agent to participate, reveal his type, and take the recommended action.

We first study the necessary local conditions, showing that the local second order conditions

reduce to a single condition capturing that in a specific sense, incentives are stronger for more able

agents. We then turn to sufficient conditions for feasibility–i.e., for global incentive compatibility.

We derive two such sets of conditions, which we view as the first main contribution of the paper.

Each is a stronger version of the condition that incentives are stronger for more capable agents.2

1For adverse selection, see, e.g. Guesnerie and Laffont (1984) and the textbook treatment in Chapter 7 of
Fudenberg and Tirole (1991). For moral hazard, see the seminal papers by Holmstrom (1979) and Grossman and
Hart (1983). See also the textbook treatments in Laffont and Martimort (2001), and Bolton and Dewatripont (2005)
which present examples with both moral hazard and adverse selection with either two types or risk neutrality.

2We also require that, holding fixed the type announced, the expected utility from income of the agent is concave
in effort, analagous to the first-order approach in the pure moral hazard setting.
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These conditions are simple, easy to interpret economically, and form the basis for our later

analysis, in which we exhibit primitives that guarantee that one or the other condition holds.

Each condition is easily verified in numerical examples, and can plausibly be checked empirically.

Our first condition centers around the action schedule alone. The marginal cost of effort to

the agent falls with his type but rises with his action. We show that a sufficient condition for

feasibility is that recommended action rises fast enough so that on net a more capable agent faces

a higher marginal cost of effort. We refer to this as the increasing marginal cost condition (IMC ).

We show that if an optimal menu satisfies IMC then for each type, the compensation scheme

is of the standard Holmstrom-Mirrlees (henceforth HM ) form, as in the pure moral hazard case.

That is, the inverse of marginal utility is equal to a Lagrange multiplier on the participation

constraint plus a Lagrange multiplier on the (local) incentive constraint times the likelihood ratio.

This is somewhat remarkable, since in principle, the solution to the problem–which contains all

three of moral hazard, adverse selection and risk aversion–could have been wildly complicated,

with the precise structure of incentives provided to one type crucial to whether other types wish

to deviate. Instead, when IMC holds, compensation consists of objects that are well understood

from the moral-hazard setting, and everything we know from that setting (Holmstrom (1979),

Mirrlees (1975), and the enormous literature that follows) continues to be relevant.

We then turn to the linear probability case in which the cumulative distribution of output

below a given threshold is linear in effort. We show that IMC –which we have shown is sufficient

for feasibility–is also necessary. But then, a dramatic simplification of the problem presents itself.

We use the knowledge that an optimal solution will involve only HM contracts to construct a cost

function over effort for any given type and required surplus. We then insert this cost function into

a simple screening problem where IMC is imposed as a constraint. While this screening problem

is not quasi-linear, we show that it is amenable to analysis. We then take the solution to this

screening problem, and substitute back in the appropriate HM contract for each type.

The problem in the linear setting thus effectively decouples into one where we first solve a

moral hazard problem and we then solve an adverse selection problem that uses the solution to the

moral hazard problem as an input. This makes the problem both technically and computationally

tractable.3 Rather than double deviations making the problem exponentially harder, the problem

is instead solvable by simple extensions to tools we already know for the two pure cases.

In a standard screening problem, things are especially simple if one can ignore the monotonicity

constraint and solve the relaxed program pointwise. But, IMC is just a strengthened monotonicity

condition. Hence it is of paramount interest to know primitives under which the solution to the

relaxed program is not only monotone, but satisfies IMC. Then, because no ironing is involved,

the solution is both more easily derived and has a particularly simple structure. Indeed, we

3See Section 5 of Kadan and Swinkels (2013) for a numerically efficient algorithm to solve the moral hazard
problem. Our existence proof for the adverse selection problem points the way to a simple numerical solution of
the second step.
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provide a new result showing existence of a solution for this (non quasi-linear) relaxed screening

problem, one that shares many of the standard properties that we understand from the screening

literature, e.g., Myerson (1981), Maskin and Riley (1984), and Guesnerie and Laffont (1984). The

optimal action for any given type reflects the well-understood trade-off between creating surplus

on that type and creating rents for more able types. Each type except the least able receives an

information rent, and the slope of the information rent at any given type is given by the rate of

change of the agent’s disutility of effort with respect to his type at the equilibrium effort level.

Motivated by this, we show permissive primitive conditions under which IMC is guaranteed to

hold at the solution to the relaxed problem. We also examine the case with two outcomes, which

can be taken as a special case of the linear case. Here we exhibit even simpler primitives that

guarantee IMC. Altogether, these results make the linear case a useful testbed for applications of

contract theory involving adverse selection and moral hazard.

When one moves beyond the linear case, IMC is no longer necessary for feasibility, but it

remains sufficient. It thus remains of fundamental interest to know when the same basic three

step process we followed for the linear case continues to work. That is, we examine when we

can decouple the problem by (i) solving a relaxed HM problem for any given type, surplus and

action, (ii) using the cost function generated as an input to a screening problem, and then (iii)

substituting the appropriate HM contract in for each type at the solution to the screening problem.

The decoupled solution is the solution to a substantially relaxed program: among the incentive

constraints in the original problem are that the agent should not want to perturb his recommended

action having announced his type honestly, or perturb his announcement of type conditional on

having stated his true type. Our decoupled solution is by construction optimal subject only to

these two constraints. So, if the decoupled solution is feasible, it is optimal.

We thus look for primitive conditions under which the solution to the second-stage screening

problem is guaranteed to satisfy IMC and hence be feasible. Because the cost function arises from

the HM problem, we can leverage its considerable structure. We provide a very general result

that imposes only mild assumptions on utility and no assumptions beyond our ambient ones on

the distribution over output. But, for any given specification of the fundamentals, our result holds

only if the outside option of the agent is sufficiently high. The results is thus most relevant when

having the agent participate is sufficiently important to the principal, as for example if the price

of output is sufficiently high. To better understanding how large an outside option is required, we

examine the more structured case of square-root utility. Under suitable conditions, the outside

option need only be large enough that the agent prefers his outside option to working for free.

Decoupling is not always valid. We present an example where decoupling fails, and provide

intuition for its failure. So, while our results establish that in many interesting settings decoupling

works, with all of its implications, one cannot simply start from the presumption that a model

with both moral hazard and adverse selection is effectively one where the solution has to satisfy
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the conditions of both, but no more. Results of the form we derive are needed.

The two-outcome case forms the basis for a central application of our results. We consider

an insurance market in which a monopolist provider faces customers who differ in their innate

riskiness but also take a hidden action to lower the probability of loss. In this setting, there

is a common values aspect that we have not previously allowed for since the type of the agent

enters directly into the probability of loss, and thus the utility of the principal. We show how to

reparameterize this problem so that it fits our model, and then compare this setting to ones with

full information, only adverse selection, and only moral hazard.

Condition IMC is not the only path to sufficiency. Say that the single crossing condition

(SCC ) holds if the compensation scheme of a more able agent, as a function of the signal, single-

crosses that of a less able agent from below, which is again a condition that more capable agents

are matched with higher powered incentive schemes. We provide primitives for SCC. The key is

to find a class of distributions where any two HM contracts are guaranteed to cross at most once.

We show that the exponential families are exactly that class.

We close with three extensions of our results. The first, foreshadowed by our analysis of the

insurance problem, is to the question of optimal exclusion. Because of the decoupled structure

we have exposed, this problem becomes tractable, and we provide economically interpretable

necessary and sufficient conditions for optimal exclusion. These share some key properties of

optimal exclusion in a pure adverse-selection setting.

Our second extension, again foreshadowed by the insurance setting, is to a model with common

values. While very useful when it works, the reparameterization used in our analysis of the

insurance market is not always possible. Our last result explores a setting where the type of the

agent directly enters into the utility of the principal in an irreducible way. We show conditions

under which SCC remains a sufficient condition for feasibility of a menu, and discuss why a

generalization of IMC is harder.

Finally, we examine the question of whether it is without loss of generality that mechanisms

are deterministic. We show that under any primitives that guarantee decoupling, a deterministic

contract is optimal even if one allows the principal to randomize.

We proceed as follows. After describing the model in Section 2, we analyze three simpler

benchmarks in Section 3. We then turn to the central case with both moral hazard and adverse

selection. Section 4 describes the necessary conditions for feasibility, while Section 5 presents

our first sufficient conditions for global incentive compatibility. Section 6 explores the case of

linear output, and exposes the idea of decoupling. Section 7 describes the decoupling program

for general environments, and Section 8 analyzes a very general class of primitives that guarantee

IMC, examines the square-root utility case, and shows an example where decoupling fails. Section

9 applies our tools to an insurance market. Section 10 examines SCC, and shows primitives for it

to hold. Section 11 examines optimal exclusion, the common-values setting, and randomization.
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Section 12 concludes. Omitted proofs are in Appendix A. Appendix B shows existence of a

solution to the relaxed pure adverse selection problem. Appendix C shows existence in the pure

moral hazard problem, and some differentiability results used in the analysis.

1.1 Literature

The literature on optimal contracts under adverse selection and moral hazard with a risk-averse

agent at the level of generality that we pursue is small. Faynzilberg and Kumar (1997) analyze

a related model where the agent’s type enters solely into the distribution of the signal, and shed

light on the solution to a relaxed problem that only considers the local incentive constraints plus

a separability condition on the signal distribution. Under that condition our model subsumes

theirs by the reparameterization in Section 9. In a procurement setting, Baron and Besanko

(1987) analyze a purchaser and a supplier that has private information about cost and takes an

unobservable action. Using a parameterized model, they shed light on some properties of optimal

contracts subject to local constraints. Neither of these papers takes advantage of the clarity and

tractability that decoupling brings to the analysis. In an unpublished paper, Fagart (2002) studies

the same combination of moral hazard and adverse selection as us, and discusses decoupling and

some its implications. None of these papers tackle the crucial issue of when a solution to the first-

order conditions is globally incentive compatible, or of what primitives ensure that the decoupled

program yields a solution that satisfies these conditions, which are central contributions of this

paper.4 Also related is Gottlieb and Moreira (2013), who analyze a principal-agent problem with

moral hazard and adverse selection but where the agent’s private information is about the effect

of effort on the distribution of a binary signal. In their setup, both type and effort take on only

two possible values, while in our case, types and actions are continuous, and private information is

(except when we turn to our analysis of the full common-values model) on the disutility of effort.

Gottlieb and Moreira (2013) provide several insights about optimal menus, including distortion,

pooling, and exclusion. Given the difference in environments, ours and their paper are best viewed

as complementary. Finally, Laffont and Tirole (1986) derives the optimality of linear contracts

under moral hazard and adverse selection with a risk neutral agent, which also decouples in a

straightforward way.5

There is a well-established literature on insurance under adverse selection or moral hazard.

Indeed, one of the first papers on screening is Stiglitz (1977), who analyzes a monopolistic insurer

whose consumers have private information about their exogenous probability of a loss.6 Shavell

4In the pure moral hazard literature, a different form of decoupling is the two-step procedure of Grossman and
Hart (1983), who first cost minimize for each effort level and then profit maximize using the cost function derived.
See Section 3.3 below for a description of this two-step methodology.

5There is an emerging literature on dynamic contracts thatcombine adverse s election and moral hazard. Recent
examples are Strulovici (2011), Williams (2015), and Halac, Kartik, and Liu (2016). For tractability, they impose
more restrictive assumptions on primitives than we do in our more general static model.

6See Chade and Schlee (2012) for further properties of the profit-maximizing menu of contracts in this setting.
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(1979) and Holmstrom (1979) provide substantial insight into the optimal contract when instead

the consumer’s effort in reducing the probability of a loss is unobservable. We are unaware of

any general analysis of the realistic problem in which the consumer is privately informed about

his riskiness and can also exert care to reduce it, which is the application we study.7 It can be

thought of as a natural extension of Stiglitz (1977) to incorporate moral hazard.

2 The Model

We analyze the following principal-agent problem with moral hazard and adverse selection. The

agent has a type θ ∈ [θ, θ̄], with θ distributed according to a cumulative distribution (cdf) H with

strictly positive and continuously differentiable density h. The agent exerts effort a ≥ 0, possibly

with upper bound a <∞, where effort has disutility given by c(a, θ) for every (a, θ). The function

c is three times continuously differentiable, where c(0, θ) = 0, and where for all (a, θ) with a > 0,

we have ca > 0, caa > 0, cθ < 0, caθ < 0, caaθ ≤ 0, and caθθ ≥ 0. That is, cost is strictly increasing

and convex in effort, total and marginal costs strictly decrease with ability, cost is less convex in

effort when ability is higher, and as effort increases, cost becomes more convex in ability.8

The agent is risk averse with strictly increasing, strictly concave, and thrice continuously

differentiable utility function u over income. If the agent has type θ, exerts effort a, and obtains

wage w, then his total utility is u(w)− c(a, θ). He has an outside option that yields utility ū.9

Neither a nor θ are contractible, since we assume that neither is observable. The principal only

observes a signal x, distributed according to cdf F (·|a) when the agent exerts effort a. For the most

part we focus on the case where x is continuously distributed on a compact interval [x, x̄] and the

cdf has a positive density f(·|a) that is twice (and at one point thrice) continuously differentiable.

But we will also consider later the case where x has a Bernoulli distribution. We assume that

f satisfies the monotone likelihood ratio property (MLRP), so that l(·|a) ≡ fa(·|a)/f(·|a) is

increasing in x. To avoid a nonexistence issue, we assume that l is bounded.

The principal is risk neutral and her expected utility if the agent exerts effort a and she pays

a wage w is B(a)−w, where B, the expected benefit the principal derives from the agent’s effort,

is twice continuously differentiable, increasing, and concave in a. In some settings, the signal is

output, and thus it is natural to assume that B(a) is the expectation of x given a. But, in others,

x is a signal distinct from the eventual profits that the principal will realize from the agent’s

effort, and so B(a) need not be tied to the expectation of x.

7An exception is Laffont and Martimort (2001) (Section 7.1.3), which we discuss below.
8We use increasing and decreasing in the weak sense of nondecreasing and nonincreasing, adding ‘strictly’ when

needed, and similarly with positive and negative, and concave and convex. For any function f , we write (f)x for
the total derivative of f with respect to x, and fx for the partial derivative. We use the symbol =s to indicate that
the objects on either side have strictly the same sign.

9In Section 9 we consider an insurance setting with type-dependent reservation utility.
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The contracting problem unfolds as follows. The principal offers a menu of contracts that

consists of a pair of functions (π, α), where π : [x, x] × [θ, θ] → R specifies the compensation the

agent receives if he announces type θ, and signal x is observed, and α : [θ, θ]→ [0, a] recommends

an effort level to each type θ. Given the menu, and knowing his type, the agent decides whether

to accept or reject. If he accepts, then he reports a type θ′ to the principal and chooses an effort

level a′. The realization of x is then observed and the agent is paid π(x, θ′). If the agent rejects

the menu, then he takes his outside option, which delivers ū.

Let v(x, θ′) ≡ u(π(x, θ′)) be the agent’s utility from income when he reports θ′ and the observed

signal is x, and let ϕ ≡ u−1 be the inverse of u, which is strictly convex since u is strictly concave.

As is standard in the moral hazard literature, it will be convenient to work with the utility of

the compensation scheme instead of the wages. The principal is restricted to offer measurable

functions v such that for each (θ, a),
∫
v(x, θ)f(x|a)dx is well defined. We focus on deterministic

menus, i.e., for each type θ, the menu specifies an action a = α(θ) and a function v(·, θ).10 We

say that v has the First Order Property (FOP) if for each θ,
∫
v(x, θ)f(x|·)dx is concave.

By the extended revelation principle (Myerson (1982)), it is without loss of generality for

the principal to restrict attention to menus of contracts that are incentive compatible (the agent

reports his true type), and where the agent chooses the recommended effort level. For the bulk of

the paper, we simplify the exposition by assuming that the principal wishes all types of the agent

to participate. We examine optimal exclusion in Section 11.

The principal’s problem is thus the following one:

max
(α,v)

∫ θ

θ

(
B(α(θ))−

∫ x

x
ϕ(v(x, θ))f(x|α(θ))dx

)
h(θ)dθ (P)

s.t.

∫ x

x
v(x, θ)f(x|α(θ))dx− c(α(θ), θ) ≥ ū ∀ θ (1)

(θ, α(θ)) ∈ argmax(θ′,a′)

∫ x

x
v(x, θ′)f(x|a′)dx− c(a′, θ) ∀ θ. (2)

That is, the principal chooses α and v to maximize her expected profit subject to the partici-

pation and incentive compatibility constraints. For each type, the agent must be willing to accept

the menu, report truthfully, and follow the recommended action. Any menu (α, v) that satisfies

(1)–(2) is a feasible menu.

Problem (P) is, in general, quite intractable. One must deal with the double continuum of

deviations available to the agent, since he can both lie about his type, and then choose any action,

recommended or otherwise.

10In many settings, this seems the economically relevant case. Moreover, in Section 11, we show that when
decoupling works, then the optimal deterministic menu remains optimal even when the principal can randomize.
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3 Benchmark Cases

We begin with three simpler cases, which will serve as benchmarks for comparison and are also the

building blocks of our decoupling program. The first is the complete information setting without

adverse selection or moral hazard. The second is the pure adverse selection case. Since the agent

is risk averse, there are a few differences with the standard screening problem that we point

out. We provide an existence result for a relaxed problem that omits some incentive constraints

that also applies to our decoupling program, plus conditions on primitives for the solution of the

relaxed problem to be a global optimum. Finally, we go over the pure moral hazard case, and

derive some properties of the associated cost minimization problem.

3.1 The First Best

Consider first the case where both θ and a are observable and thus we do not have the incentive

constraints (2). Then it is immediate that v is independent of x (since the agent is risk averse), and

that (1) binds for all types (the principal extracts all the surplus). Hence, setting v(x, θ) ≡ ṽ(θ)

for all θ, we have that ṽ(θ) = ū + c(α(θ), θ). In turn, α is uniquely determined at each θ by

Ba(α(θ)) = ϕ′(ū+ c(α(θ), θ))ca(α(θ), θ). Since caθ < 0 and ϕ′′ > 0, it follows that the optimal α

is strictly increasing in θ. In turn, ṽ′(θ) = (c(α(θ), θ))θ = ca(α(θ), θ)α′(θ) + cθ(α(θ), θ), which has

ambiguous sign, since as θ rises, the agent has lower disutility of effort for any given effort, but is

required to exert higher effort. In fact, one can show that ṽ is decreasing if ca/cθ decreases in a.11

3.2 Pure Adverse Selection

Consider now a variation on the pure adverse selection case. To rewrite this problem in a way that

will be convenient when we turn to the combined problem with both moral hazard and adverse

selection, define Ĉ(a, u0, θ) to be the cost of implementing action a when the agent’s type is θ

and he has to be given a utility level u0. When there is no moral hazard, ṽ is independent of x as

in the first-best case, and so Ĉ(a, u0, θ) is simply ϕ(u0 + c(a, θ)). When we turn to the combined

problem, Ĉ will reflect the cost, in the context of a HM style relaxed moral hazard problem, of

inducing effort level a from type θ when surplus u0 must be provided. One could also imagine Ĉ

as coming from a situation in which the principal faces a restricted contract space, as for example,

linear contracts or simple option contracts.

Let S(θ) = ṽ(θ) − c(α(θ), θ) be the surplus of type θ when he reports his type truthfully.

Then, since caθ < 0, a standard argument shows that incentive compatibility is equivalent to α

11To see this, differentiate Ba = ϕ′ca to solve for α′, and then insert into the expression for ṽ′
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increasing and the following integral representation of S:

S(θ) = S(θ)−
∫ θ

θ
cθ(α(s), s)ds, (3)

where S(θ) = ū by the participation constraint and optimality, and where we recall that cθ < 0.

When the agent is risk neutral (e.g., Guesnerie and Laffont (1984)), and so Ĉ(a, u0, θ) =

c(a, θ) + u0 is linear in u0, one can rewrite the objective function to eliminate S(θ), and then

maximize pointwise with respect to the effort level. But here, because the agent is risk averse, Ĉ

is not linear in u0. As such, the trade-off involved in asking extra effort from a particular type θ

depends on S(θ), which by (3), depends on the effort levels of all types lower than θ.

To proceed, we formulate the principal’s problem as the following optimal control problem:

max
α

∫ θ

θ

(
B(α(θ))− Ĉ(α(θ), S(θ), θ)

)
h(θ)dθ (PAS)

s.t. α increasing (4)

S(θ) = ū−
∫ θ

θ
cθ(α(τ), τ)dτ ∀θ. (5)

Ignore for now constraint (4). Then the optimality condition at any given θ is

Ba(α(θ))− Ĉa(α(θ), S(θ), θ) +
caθ(α(θ), θ)

h(θ)

∫ θ̄

θ
Ĉu0(α(t), S(t), t)h(t)dt = 0, (6)

which reflects the standard efficiency versus information rents trade-off.12 In particular, the cost

of providing an extra util to all types above θ is
∫ θ̄
θ Ĉu0(α(t), S(t), t)h(t)dt, which depends on

the surplus and action of all types higher than θ. Assume Ĉaa > 0. In the case of pure adverse

selection, this is trivially satisfied, since Ĉaa = ϕ′′c2
a + ϕ′caa, where ϕ is strictly increasing and

strictly convex. We discuss this further below. Given Ĉaa > 0, Baa ≤ 0, and caaθ ≤ 0, the first

term of (6) is strictly decreasing in a, and the second term is decreasing in a, and so, if (6) yields

a solution α(θ), then this solution is unique.

A standard property of screening problems is that effort equals its first best level for the most

capable agent θ̄. Here, however, Ĉa will in general depend on u0. In particular, if Ĉau0 > 0, as

when Ĉ(a, u0, θ) = ϕ(u0 + c(a, θ)), then even the effort of the most capable agent, θ̄, will be lower

than the complete information case (although still efficient) due to the information rent θ̄ obtains.

The effort level of less capable agents will be distorted downwards from efficiency both because

S(θ) > u and because the second term of (6) is strictly negative.

12Formally, rewrite (5) as S′ = −cθ for almost all θ and S(θ) = ū, and let η(θ) be the co-state variable associated
with S′ = −cθ. Then the Hamiltonian of the relaxed problem that ignores (4) is H = (B−Ĉ)h−ηcθ, the optimality
conditions are ∂H/∂a = 0 and η′(θ) = −∂H/∂S, and the transversality condition is η(θ̄) = 0. Algebra yields (6).
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The validity of this solution is predicated on two properties. First, we need to know that a

solution to (5)–(6) exists, and that such a solution does indeed solve the relaxed problem. In

Appendix B we show that it is sufficient that Ĉ is convex in (a, u0) for each θ and satisfies an

appropriate boundary condition at a = 0 and a = a. Our method of proof is constructive and

hence points the way to numerical analysis when (5)–(6) do not admit a closed form solution.13

Second, for the case of pure adverse selection, we need the omitted monotonicity constraint

(4) to be satisfied (in the decoupling program, we will see that monotonicity is not enough, and

indeed a major focus of our analysis will be to find a tractable replacement for (4)). We now

search for sufficient conditions under which this is the case. In fact, we will provide conditions

under which α is strictly increasing, and thus the optimal menu completely sorts types.

Totally differentiating (6) with respect to θ yields, after some algebra,

α′ =

(
−caθθ + caθ

h′

h

) ∫ θ̄
θ Ĉu0h+ caθĈu0h− Ĉau0cθh+ Ĉaθh

(Baa − Ĉaa)h+ caaθ
∫ θ̄
θ Ĉu0h

. (7)

Given our assumptions, the denominator is strictly negative, and so α′ > 0 if and only if the

numerator is strictly negative. We show in the Appendix that this is the case if h is log-concave

and −caθ is log-convex in θ.14

3.3 Pure Moral Hazard

The last benchmark case is the one where θ is observable but the action is not, i.e., there is moral

hazard but no adverse selection. Begin by defining C(a, u0, θ) as the cost of implementing action

a for type θ given that he needs to receive utility level u0. That is,

C(a, u0, θ) = min
v̂

∫ x

x
ϕ(v̂(x))f(x|a)dx (8)

s.t.

∫ x

x
v̂(x)f(x|a)dx− c(a, θ) ≥ u0

a ∈ argmaxa′

∫ x

x
v̂(x)f(x|a′)dx− c(a′, θ).

Consider the relaxed version of (8) in which the incentive constraint is replaced by the first-order

condition
∫ x
x v̂(x)fa(x|a)dx − ca(a, θ) = 0. Under well understood primitives, the solution to

this problem will satisfy FOP, and hence be feasible and thus optimal.15 We will assume this

13Because our analysis in Appendix B covers a general Ĉ, it subsumes the case of pure adverse selection where
the agent’s utility is not additively separable in income and effort.

14There is always complete sorting on an interval including θ̄, even without the extra structure on h and c.
15See Rogerson (1985), Jewitt (1988), and a large literature that follows thereon.
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going forward. We will also maintain the assumption that such a solution exists.16 Following

Holmstrom (1979) and Mirrlees (1975), if we let λ and µ be the Lagrange multipliers for the

participation constraint and for the agent’s first-order condition in the relaxed problem, then the

cost-minimizing compensation scheme v̂ solves ϕ′(v̂(x)) = λ+µl(x|a) for all x, where λ and µ are

functions of a, u0, and θ, and where, as usual, since l is increasing in x, so is v̂.17 We denote the

compensation scheme that solves this program by v̂(·, a, u0, θ).

Having solved for C, the solution to the principal’s problem is, for each type θ, to choose a to

maximize B(a)− C(a, ū, θ). Since the type of the agent is observable (no adverse selection), two

properties are true. First, there are no information rents, and so each type of agent receives ū.

Second, the problem decouples in the sense that there is no interaction between the moral hazard

problem the principal faces at one type versus another. The thrust of much of what follows is to

explore when a version of this sort of decoupling is valid even with adverse selection.

From now on we will assume that Caa > 0. It is intuitive that this should be true, but

primitives are not trivial to find. One such set is provided by Jewitt, Kadan, and Swinkels

(2008), who focus on the behavior of a measure of the local informativeness of the output about

effort. Given MLRP, a useful case where their information condition is always satisfied is if Faa

is everywhere zero (see Jewitt, Kadan, and Swinkels (2008), Example 2). Another condition for

Caa > 0 is provided by Chade and Swinkels (2019) (henceforth CS ), who show that under mild

conditions on the utility function, Caa > 0 will always hold if ū is sufficiently large.

Given Caa > 0, a is implicitly defined as a function of ū and θ by Ba − Ca = 0, and so, if

Caθ ≤ 0, then the optimal action the principal implements is increasing in θ, and if Cau0 ≥ 0, then

it decreases in ū. The second result is significant, because as we will see, given decoupling, the

principal will indeed treat each type θ as facing a pure moral hazard problem, but one in which

the agent, except the lowest type, has information rents, and hence has to be given utility higher

than ū. Thus, when moral hazard is combined with screening, the principal will distort effort

down from the pure moral hazard case both because Ca is higher when facing the agent who is

gathering rents, and because higher effort for one agent implies higher rents for higher agents.

Given this, let us dive for a moment into when Cau0 is positive and Caθ is negative. The

Envelope Theorem yields Cu0 = λ, and hence, since the Lagrange multipliers are continuously

differentiable (see Jewitt, Kadan, and Swinkels (2008)), Cau0 = λa. Similarly, Cθ = λcθ + µcaθ,

and hence Caθ = λacθ +λcaθ +µacaθ +µcaaθ. Given our assumptions, it is thus sufficient to show

16Mirrlees (1975) and Moroni and Swinkels (2014) each point out problems regarding the existence of a solution
to the relaxed problem. Boundedness of l rules out the first. We tackle the other in Appendix C, providing an
existence result. This appendix also justifies interchanges of differentiation and integration that we use repeatedly.
We henceforth ignore these issues.

17For some utility functions such as u(w) =
√
w, there is the implicit constraint w ≥ 0, and for some specifications

of ū and c, this constraint will bind at the optimal contract. While our analysis could be extended to this case, this
adds complexity which is distracting for the purposes of this paper. For ū sufficiently large, this constraint will not
bind, and we will henceforth assume that this is so.
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that each of λa and µa are positive. We show in Appendix A.1 (see Lemma 6) that this is the

case if l is submodular, f is log-concave in a, and ρ is concave, where ρ is the well-known mapping

introduced by Jewitt (1988), which maps 1/u′ into utility. (Formally, let ψ map 1/u′ into money,

i.e., ψ solves 1/u′(ψ(τ)) = τ . Then ρ is given by ρ(τ) = u(ψ(τ)).)

4 Necessary Conditions

Let us now turn to the central topic of the paper, the setting with both moral hazard and adverse

selection. We begin by deriving a set of necessary conditions for a menu (α, v) to be feasible. To

do so, we will need to assume that a variety of objects are well-defined.

Definition 1 A menu (α, v) is regular if (i) everywhere that α is differentiable in θ, so is v; (ii)

for all θ, there are v̄(·, θ) and v(·, θ) such that as ε ↓ 0, v(·, θ + ε) converges uniformly to v̄ and

v(·, θ − ε) converges uniformly to v.

At many places regularity is more than we need, but imposing it simplifies and clarifies the

exposition. Since regularity is imposed on the endogenous object v, when we turn to the decoupling

program, we will show that the solution to that program is indeed regular. And since we will also

provide primitives for the candidate (α, v) generated by the decoupling program to be a global

optimum, it will follow that optimal menus are regular in all such cases. For the sake of simplicity,

we will also assume that anywhere that α is differentiable each of
∫
vfa,

∫
vθf ,

∫
vθfa,

∫
vθθf and∫

vfaa are well defined and finite. Again, we will show later that any solution to the decoupling

program will satisfy these properties.

Let us begin by collecting the necessary conditions for feasibility. Let S(θ) =
∫
v(x, θ)f(x|α(θ))dx−

c(α(θ), θ) be the surplus of type θ.

Definition 2 Menu (α, v) satisfies the basic feasibility conditions ( BFC) if α is increasing, with

S(θ) ≥ ū, ∫
v(x, θ)fa(x|α(θ))dx = ca(α(θ), θ), and (9)

S(θ) = S(θ)−
∫ θ

θ
cθ(α(s), s)ds, (10)

and where anywhere that α is differentiable, we have α′ > 0,∫
vθ(x, θ)f(x|α(θ))dx = 0, (11)

and ∫
vθ(x, θ)fa(x|α(θ))dx ≥ 0. (12)
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Proposition 1 Let (α, v) be regular and feasible. Then, (α, v) satisfies BFC.

That α is strictly increasing reflects basic incentive compatibility. Intuitively, if a menu recom-

mends the same action to two different types, it must yield the same expected utility of income

to both (otherwise both would strictly prefer the contract with the highest expected utility of

income). But, since c is strictly submodular and (9) holds, the contract for the lower type must

offer strictly higher marginal incentives for effort. Thus the higher type would strictly profit from

announcing the lower type and choosing a strictly higher action than the recommended one. A

strictly increasing α is necessary to prevent these double deviations.

The first three displayed equations in order ensure that locally, the agent does not want to

report truthfully but deviate from the recommended action, change both his announcement and

action along the locus (θ, α(θ)), or misreport his type while following the recommended action.18

Equation 12 is a second order necessary condition. It says that if type θ were to raise his

announcement by a little bit, then the contract he would face would change in such a way as to

strengthen his marginal incentive to work. If this condition was not met, then a double deviation

of announcing a lower than truthful type and then taking a higher than recommended action

would be attractive. Interestingly, (12) captures all of the conditions for the relevant Hessian to

be negative semi-definite.

Differentiating (9), one arrives at

0 ≤
∫
vθ (x, θ) fa (x|α (θ)) dx = (ca (α (θ) , θ))θ − α

′ (θ)

∫
v (x, θ) faa (x|α (θ)) dx.

using Proposition 1. But then, where α is differentiable, (12) holds if and only if

α′(θ) ≥ caθ(α(θ), θ)∫
v(x, θ)faa(x|α(θ))dx− caa(α(θ), θ)

> 0, (13)

where the denominator is negative by FOP, and the numerator is strictly negative. Hence, unlike

the pure adverse selection case, not only must α be strictly increasing, but also α′ must be bounded

away from 0. Note that (13) must hold even if there are only a finite number of compensation

schemes offered, as would for example be the case if there was a menu cost to the principal

per compensation scheme. Indeed, if a single compensation scheme is offered to all types, then∫
vθ (x, θ) fa (x|α (θ)) dx = 0, but different agents would indeed choose their actions in such a way

that (13) held.

18Wherever α is differentiable, any two of (9)–(11) imply the third. This is intuitive. The agent chooses his report
and action within the two dimensional space of reports cross actions and (using that α′ > 0) each of the three local
deviations can be expressed as a linear combination of the other two.
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5 A First Sufficient Condition: Increasing Marginal Costs

Let menu (α, v) be regular and satisfy FOP and BFC.19 In this section, we provide a sufficient

condition on (α, v) under which (α, v) is feasible. The condition has a meaningful economic

interpretation and interesting economic implications. We will shortly provide broad classes of

primitives under which it is satisfied.

We begin with a preliminary result. Let the graph of α be denoted by L ≡ {(θ, α(θ)) : θ ∈
[θ, θ]}. We now that show that ‘on locus,’ type θ is strictly harmed by misstating his type.

Lemma 1 If the menu (α, v) satisfies BFC, then the agent strictly prefers prefers to report his

true type and take the recommended action to any other report-action pair on L.

Our sufficient condition for feasibility focuses on ca(α(θ), θ), the marginal cost of effort of a

compliant agent as a function of his type θ. Say that the menu (α, v) satisfies the increasing

marginal cost condition (IMC) if ca(α(·), ·) is increasing. That is, as θ increases, α increases fast

enough that the increase in ca driven by caa overwhelms the decrease in ca driven by caθ. By (13)

and given FOP, IMC is stronger than (12), and hence captures a stronger sense in which more

capable agents face stronger incentives for effort. Our first theorem states that IMC is sufficient

for feasibility.

Theorem 1 If the menu (α, v) is regular and satisfies BFC, FOP, and IMC, then it is feasible.

The force of IMC is to show that “double” deviations are suboptimal. Fix a true type θT .

Now, starting from any point (θA, α(θA)) on the locus, consider increasing the action alone (see

Figure 1). This generates an initial return that is less than ca(θA, α(θA)), the marginal cost on

locus of the agent whose type is being announced. By FOP, this return deteriorates as one moves

vertically further up. But, moving up and to the right generates returns equal to the marginal

cost of the agent who is active at that point on the locus, and by IMC, this is better than the

returns to vertical movement. In particular, any movement from left to right along the locus is

irrelevant by the first order condition with respect to the announced type (11). Thus, for any

double deviation, there is an even better on-locus devation available, and so, by Lemma 1, the

agent is better off still to state his true type and take the recommended action.

The proof of the proposition extends this argument to the case where v and α can change

discontinuously, with α jumping at some points. This is of much more than just technical interest:

if for any reason, the principal can offer only a finite number of compensation schemes (as for

example due to a menu cost), then jumps in α will be an integral part of the solution. Nonetheless,

IMC remains a sufficient condition for feasibility.

19Recall that a menu (α, v) satisfies FOP if
∫
v(x, θ)fa(x|·)dx decreases in a for all θ.
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Figure 1: IMC. Under IMC, a deviation to (θA, â) is dominated by the on-locus deviation (θ̂, â),
which in turn is dominated by telling the truth and taking the recommended action.

5.1 IMC and The Holmstrom-Mirrlees Property

Say that a menu (α, v) has the Holmstrom-Mirrlees Property (HMP) if, for almost all θ, v(·, θ)
is the HM contract given α(θ). That is, there are λ and µ such that ϕ′(ṽ(·)) = λ+ µl(·|a). Our

next proposition shows that if an optimal menu satisfies IMC, then it must also satisfy HMP.

Proposition 2 Let (α, v) be an optimal menu that satisfies IMC. Then, (α, v) has HMP.

Proof Let (α, v) be optimal and satisfy IMC, but not HMP. For each θ, let ṽ(·, θ) be the HM

contract implementing α(θ) at surplus S(θ). Since the HM solution is unique, ṽ is strictly cheaper

than v where ṽ(·, θ) 6= v(·, θ). But, then, since IMC depends only on α, and by Theorem 1, (α, ṽ)

is both feasible and strictly more profitable than (α, v), a contradiction. �

Proposition 2 adds to the empirical content of the results. If one can observe enough to confirm

IMC (e.g., if one can see either f and the menu of contracts, or c and α), then Proposition 2

gives the (potentially testable) implication that the underlying menu has HMP.

6 Linear Output

Consider the linear probability case, faa = 0, commonly used in applications, especially when

output is Bernoulli, or is continuously distributed with effort linearly mixing between two distri-

butions. This section makes two main contributions. First, we show that the combined problem
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decouples and becomes essentially as tractable as a (non-quasilinear) screening problem, with the

sole difference being that the (necessary and sufficient) monotonicity constraint on the action

in the pure screening problem is replaced by a stronger (necessary and sufficient) monotonicity

constraint in the combined problem. Second, we provide simple and easy to check primitives

under which the solution to the relaxed screening problem in which this constraint is omitted in

fact satisfies it, and so is in fact optimal. Together, this provides a complete “plug and play”

environment to study simultaneous moral hazard and screening.

As the following proposition shows, BFC and IMC together characterize feasibility.

Proposition 3 If (α, v) is regular and faa = 0, then (α, v) is feasible iff BFC and IMC hold.

The key to the proof is that (9) is an identity, and so, since faa = 0, (ca(α(θ), θ))θ =
∫
vθfa,

where the last expression must be positive by (12) so as to prevent double deviations. Hence

IMC, which together with BFC is sufficient by Proposition 1, is also necessary.

It follows by Proposition 2 that any optimal menu in the linear case has HMP. This is somewhat

remarkable. Despite the double continuum of incentive constraints, in any optimal menu, the

contract facing an agent of any given type is of the HM form. There is thus a very strong

prediction for the form of optimal menus. The fact that HMP must hold in the linear setting also

points to a massive simplification of (P). Recall that C(a, u0, θ) is the cost of implementing effort

level a at utility u0 for type θ in the relaxed moral-hazard problem. Then, we assert, (P) can be

written simply as

max
α

∫ θ

θ
(B(α(θ))− C(α(θ), S(θ), θ)))h(θ)dθ (PL)

s.t. IMC and S(θ) = ū−
∫ θ

θ
cθ(α(τ), τ)dτ ∀θ,

where one then constructs the requisite v using the relevant HM contract at each θ. To see

this, note first that, by HMP, we can replace the integral
∫
ϕ(v(x, θ))f(x|α(θ))dx in the objective

function by C(α(θ), S(θ), θ). But, in the linear case, the participation and incentive constraints,

(1)–(2), are equivalent to BFC and IMC. Next, as argued in Footnote 18, to establish BFC, it

suffices to include two of conditions (9)–(11), and in this case the first-order condition (9) holds

since v(·, θ) solves the HM problem, and condition (10) is explicitly given. Finally, since v(·, θ) is

HM, FOP holds by assumption.20

Note that problem (PL) differs from (PAS), the problem in the pure adverse-selection setting,

only in that monotonicity of α has been strengthened to IMC. Thus, this is a problem to which

standard ironing techniques can be applied. Further, the version of this problem in which IMC is

omitted is exactly the same as the version (PAS) in which monotonicity is omitted. This problem,

20We will establish below that (α, v) constructed from (PL) is in fact regular. See Lemma 3.
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which we analyzed in Section 3.2, is both tractable and of a familiar form that gives considerable

economic insight. Hence, exactly as it is interesting to know when the solution to the relaxed

screening problem in fact satisfies monotonicity, it is interesting to know when that solution also

satisfies IMC. When this is true, then the solution to the rather forbidding problem (P) decouples

into two well-understood problems, a pure screening problem and a pure moral hazard problem.

Our next two results exhibit a broad class of primitives under which IMC holds at a solution

to the relaxed problem (we will exhibit more primitives which also apply to the linear case in the

next section). We begin with an assumption to control one set of forces.

Assumption 1 For each a, the function −caθ(a, ·)/(caa(a, ·)h(·)) is decreasing.

This trivially holds if c(a, θ) = (1 − θ)a + a2 and h is increasing. For many natural cost

functions, caaθ < 0, which is a force in the wrong direction. Thus, if c(a, θ) = (2− θ)a2/2, where

θ ∈ [0, 1], then the assumption holds only if h increases fast enough.

Recall that ρ maps 1/u′ into utility. Our next result will use that ρ is concave, which holds

for the most commonly used utility functions in applications.

Proposition 4 Let Assumption 1 hold, caa/caθ be increasing in a, Faa = Baa = 0, skewF (l) ≤ 0,

and ρ be concave. Then, any solution to the relaxed version of (PL) in which IMC is omitted in

fact satisfies IMC and hence is optimal.

The proof depends on a result in CS, and a covariance inequality. Negative skewness of l is

not innocuous, but, as the following Lemma shows, holds for many simple examples.

Lemma 2 Let fL and fH be densities on [0, 1], with fL increasing, and fH/fL increasing and

concave. Let f(x|a) = afH + (1− a) fL be the linear combination of fL and fH . Then, for all a,

skewF (l) ≤ 0.

6.1 Two Outcomes

A special case in which there is linear output is the model with two outcomes, where we can

assume that the probability of the high outcome is simply a, folding any ‘curvature’ assumptions

into c(a, θ). This setting is of considerable economic interest–in particular, it will be the foundation

of our later analysis of an insurance application.

Because the probability of a good outcome is linear in effort, it remains the case that (α, v)

is feasible if and only if IMC holds. We will use that fact to derive primitives for the solution to

the relaxed program (PL) to be feasible and hence optimal. In this section we use the standard

interpretation for B as the expected value of output, so that Baa = 0. Denote by vh and v` the

utility levels that the agent receives after the high and low outcomes, respectively. These are

uniquely tied down by the participation and incentive constraints and given by vh = u0 +c(a, θ)+

(1− a)ca(a, θ), and vl = u0 + c(a, θ)− aca(a, θ). Hence, C(a, u0, θ) = (1− a)ϕ(vl) + aϕ(vh).
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Proposition 5 Sufficient for C to be strictly convex in a is

caaa
caa
≥ 3a− 2

a(1− a)
, (14)

while if Assumption 1 holds, then sufficient for IMC to hold strictly at any solution to the second-

stage screening problem is
caaθ
caθ

+
caaa
caa
≥ 1− 3a

a(1− a)
. (15)

Note that (14) holds trivially if caaa ≥ 0, and a ≤ 2/3, and holds for a > 2/3 as long as caa

grows quickly enough in a. Similarly, (15) holds trivially if a ≥ 1/3 and caaa ≥ 0, and otherwise

holds if caθ grows sufficiently quickly in proportionate terms (caθ must grow very quickly near

zero in the natural case where caθ is identically zero at a = 0). Recall also that by Theorem 2,

if caa and caaa are finite for all a ∈ [0, 1], then making u0 large enough yields Caa > 0 and strict

IMC without either (14) or (15) holding.

Example 1 Let a ∈ [0, 1], with c(a, θ) = (1 − θ)((1/(1 − a)) − a). Then, caaa/caa = 3/(1 − a),

which is greater than (3a− 2)/(a(1− a)) for all a. Algebra shows that (15) is satisfied as well.

Example 2 Let c = (1− θ) a2/2. Then, (15) is satisfied for all a. But, (14) fails for all a ≥ 2/3,

and so C is guaranteed to be convex only on [0, 2/3].

7 Decoupling

In the linear case, the fundamentally intractable problem (P) reduces to a much simpler problem.

First one solves for a cost function in the relaxed moral-hazard problem for any given action,

surplus and type. Then, one uses that cost function as an input to a pure screening problem.

Each problem, as we have already seen, is fundamentally tractable. In more general problems,

IMC is no longer necessary for feasibility. But, from Theorem 1, it remains sufficient. Thus, it

is of fundamental interest to know under what conditions the solution to the relaxed version of

problem (PL) satisfies IMC. In this section, we explore when this decoupling process works more

generally. When decoupling works, not only does it make the analysis tractable but it also yields

a number of insights about optimal menus.

Consider the principal’s problem (P). Denote by G the set of feasible mechanisms, i.e., those

that satisfy the global incentive constraints (1)–(2). Then, the principal’s optimized profits satisfy

max
(α,v)∈G

∫ (
B(α(θ))−

∫
ϕ(v(x, θ))f(x|α(θ))dx

)
h(θ)dθ ≤ max

α

∫
(B(α(θ))−C(α(θ), S(θ), θ))h(θ)dθ,

where S(θ) = ū −
∫ θ
θ cθ(α(s), s)ds. To see the inequality, note we have already shown that any

feasible menu satisfies (9), so that the agent does not want to locally change his action having
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honestly reported his type, and that C(α(θ), S(θ), θ) is by definition the cost of the least-cost

compensation scheme subject only to (9) and giving expected utility equal to S(θ). So, the right-

hand side (rhs) of the above inequality is the principal’s expected profit in a substantially relaxed

version of the original problem.

The rhs expression effectively nests a moral hazard problem within an adverse selection one.

As such, it suggests the following three-step decoupling scheme.

Step 1(Moral Hazard): Cost Minimization for Each (a, u0, θ). For each type θ, action

a, and utility u0, solve the moral-hazard problem as described in Section 3.3, thus constructing

the cost function C, and associated contract v̂.

Step 2 (Adverse Selection): Profit Maximization with Respect to α. Having con-

structed the cost function C, solve the relaxed pure adverse selection problem

max
α

∫
(B(α(θ))− C(α(θ), S(θ), θ))h(θ)dθ,

subject to the condition (5) on the surplus function S, but where we initially ignore any condition

on α. Hence we are back to the problem analyzed in Section 3.2.

Step 3 (Verification): Candidate Solution and Feasibility. For each θ, let v(·, θ) =

v̂(·, α(θ), S(θ, α), θ). That is, for each θ, v(·, θ) is the contract solving the relaxed moral hazard

problem given the action and surplus generated for θ by the adverse-selection problem solved in

Step 2. Since (α, v) solves a relaxed problem, if it is feasible, then it is optimal. But, our candidate

solution satisfies BFC and FOP by construction. Hence in particular, it will be feasible (and thus

optimal) if (α, v) satisfies IMC.

Decoupled menus exhibit a number of interesting properties. Most centrally, for each θ, v(·, θ)
is an HM contract, and so reflects the standard risk sharing versus incentives trade-off, with

the likelihood ratio playing a prominent role. This provides both economic insight and empirical

content. It is also very useful on a technical level–at multiple points in our construction, we

leverage technical properties of the moral hazard problem to facilitate our analysis.

At the same time, because the second stage is a screening problem, all types except for the

lowest one obtain an information rent, which is pinned down exactly as in the pure adverse

selection case but reflects C. Since every type except for the lowest obtains utility higher than ū,

if Cau0 ≥ 0 (see Lemma 6 in Appendix A.1 for sufficient condtions), then as in the discussion of the

pure screening problem the action of each type implemented by the principal is lower than that

in the pure moral hazard case (where all types obtain ū). Once again, the fact that a screening

problem is being solved is useful both in terms of economic insight, and at a technical level, as,

for example, in allowing us to prove existence of a candidate decoupled menu.

The sufficiency result for feasibility in Theorem 1 assumes that (α, v) is regular, as defined in
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Section 5. We close this section with a technical result showing that decoupled menus are indeed

regular, as long as α is strictly increasing.21

Lemma 3 The functions v̂, and C are twice continuously differentiable in their arguments. Let

(α, v) be a solution to the decoupling problem. If Caa > 0, and if α is strictly increasing, then α

is continuously differentiable, and (α, v) is regular.

8 A General Case where Decoupling Works

We now exhibit a very general setting where decoupling works. With no extra structure on c or

F , and only relatively mild conditions on u, we show that if the reservation utility of the agent,

ū, is sufficiently high, then IMC must hold at any decoupled menu. Of course, when ū is very

large, the principal may simply prefer not to hire the agent. Our main result is thus most relevant

in settings where the stakes are high on both sides: the agent has a high outside option, but the

principal very much needs the agent. For example, if x is output, then our results will be relevant

if the price of that output is sufficiently high.

We require first a regularity condition on u.

Assumption 2 As w →∞, u→∞, and u′ → 0.

Recall that the coefficient of absolute prudence, P , is u′′′/− u′′, and of absolute risk aversion,

A, is −u′′/u′. We require that A/u′ converges to zero as w grows.

Assumption 3 As w →∞, A/u′ → 0.

As Chade and Swinkels (2019) (CS ) show, since A/u′ = −u′′/[u′]2 = (1/u′)′, this says that as

w →∞, the cost of providing an extra util to the agent converges to a constant over intervals of

wealth of any fixed length.

Our final assumption on u states that prudence stays within some finite ratio of absolute risk

aversion as w diverges. For convenience, we assume that P/A has a well-defined limit.

Assumption 4 limP (w)/A(w) ∈ [0,∞).

As CS show, this assumption is implied by the very weak condition that for some large N ,

−1/ (u′)N is concave in w.

Example 3 Consider the HARA utility functions u = (1 − γ)κγ/γ, where κ = aw/(1 − γ) + b.

These include the linear, log, CARA, and CRRA cases. CS show that Assumptions 2-4 hold for

γ ∈ (0, 1). When γ = 0, u = logw, so that A/u′ = 1 and Assumption 3 fails.

21That α is strictly increasing is immediate if IMC holds, and will also hold under SCC, defined below.
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Under these assumptions, Lemma 6 in CS establishes the following result.

Lemma 4 As ū→∞, µ/λ, µa/λ, and λa/λ go to 0, while µ
∫
ρ′f and µa

∫
ρ′f remain bounded.

The intuition for the dominance of λ over other terms is that, in the moral hazard problem,

relaxing the participation constraint involves adding utility everywhere, which is increasingly

expensive as the outside option rises. But, relaxing the incentive constraint involves both adding

utility at high outcomes, and removing it at low outcomes, and so there is an offsetting force, and

objects involving µ grow more slowly than λ. One key point in proving this lemma is that when

ū is large, v(x̄)− v(x) remains finite (CS Lemma 3), with the intuition being that otherwise the

incentive constraint will be violated (on the side of excessive incentives). A second key point in

proving this lemma uses Assumptions 2-4 to show that when ū is large, ρ′ becomes effectively

constant over the relevant range. The intuition for µ
∫
ρ′f being finite involves the result that

v(x̄)− v(x) remains finite. See CS for details.

We can now state the central theorem of this section.

Theorem 2 Let F ∈ C4, let Assumptions 1–4 hold, and let a < ∞. Then for all ū sufficiently

large, the decoupling problem delivers a solution that satisfies IMC, and is thus optimal.

The proof starts from Lemma 8 in the Appendix, which shows that the relevant condition

involves the term λcaa, and a variety of other terms, that by Lemma 4 are dominated.

We stress that Theorem 2 relies on a broad class of primitives that significantly enlarges the

applicability of decoupling to contracting problems with moral hazard and adverse selection.

8.1 Square Root Utility

It is in general difficult to tie down how large ū must be for IMC to apply, partly because it is

difficult to obtain a closed form expression for C from the cost minimization problem. One case

that is tractable is when the agent has square-root utility u(w) =
√

2w, so that 1/u′ = u and ρ

is the identity function. Then, letting Î(a) = 1/
∫
l2f be the reciprocal of the Fisher Information

that the output carries about a, we have the following result.

Proposition 6 If Assumption 1 holds and u =
√

2w, Baa = 0, Îa ≥ 0, Îaa ≥ −2, and caa/caθ

decreasing in a for each θ, then a sufficient condition for IMC is that ū + c(0, θ) ≥ 0, which is

simply to say that the agent prefers to stay home than to work at zero income.

It is not hard to satisfy the premise about Î. Indeed, if f(x|a) = e−x/a/a, a ∈ [0, 1], x ≥ 0,

then Î = a2. The same holds if one truncates the exponential distribution at some x̂ > 0 (to

bound the likelihood ratio).
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Proposition 6 shows that if Î is well-behaved, then the required ū is anything but large!22

More generally, we suspect that the form of Proposition 2 has much more to do with the absence

of closed-form solutions than it does with ū needing to be particulary large in practical examples.

8.2 Failures of Decoupling

Decoupling is very convenient when it works. But, it need not always do so. Hence, conditions

like IMC (and SCC, analyzed in Section 10), and results establishing primitives for them, are

crucial. To see that decoupling can fail, let us return to the two-outcome case analyzed above,

where IMC is necessary and sufficient for feasibility.

Example 4 Let h = 1 on [0, 1], c(a, θ) = (1 − θ)a2/2, a ∈ [0, 2/3] (to ensure Caa > 0), and

φ(v) = v2/2 (square-root utility). The reciprocal of the Fisher Information is Î = a(1 − a), and

IMC fails in the solution to the decoupling program for an interval of types near θ = 1.

For some intuition, µa > 0 is a force towards IMC (see (26) in the Appendix). But, because

the Fisher Information is increasing for a > 1/2, µa is negative for such a. Thus, as a increases,

information improves in a way that lowers the shadow value of the incentive constraint on effort,

and this works against IMC. And since in this case IMC characterizes the second-order condition,

in the decoupled solution types close to θ = 1 can strictly profit by double deviations.

9 Insurance under Moral Hazard and Adverse Selection

We now turn to a major application of our results. We examine a monopolistic insurance market

with both moral hazard and adverse selection. Although insurance markets with both moral

hazard and adverse selection are of vast real-world importance, little is known about the properties

of optimal menus. Unlike the model analyzed so far, here the type of the agent directly enters

into the risk of a loss, and thus into the principal’s profits. Despite this common-value aspect, we

show how to reparameterize the model so that it fits into our framework. This allows us to derive

a number of interesting properties of optimal menus.

9.1 The Model and Reparameterization

Let e be the level of care an agent can take to increase the probability p(·, θ) of avoiding a loss

of size 0 < ` ≤ ω, where ω is the agent’s initial wealth. We assume pe > 0, pθ > 0, peθ ≥ 0, and

pee ≤ 0. Thus, higher types and higher effort leads to a lower probability of loss, and type and

22The square root case is subsumed by Proposition 2. Hence, if the conditions on e.g., Î are not satisfied, then
IMC continues to hold, but we must assume a larger ū to do so.
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effort are complements. Let κ be the strictly increasing and convex cost of effort. The agent’s

outside option–which is to bear the risk themselves–is type-dependent.

There is a monopolist insurance firm. If the firm collects premium t from type θ, and provides

coverage x, and the agent exercises care e, then the profit of the firm is t− (1− p (e, θ))x. Thus,

the setting exhibits common values, as θ directly enters into the firm’s profit. The firm offers a

menu (ε(·), t(·), x(·)), where ε(θ) is the recommended effort level for type θ, subject to the usual

incentive compatibility and (type-dependent) reservation utility constraints.

To reparameterize this problem as a private values setting, think of the agent’s choice as the

probability of a good outcome, with disutility dependent on his type. Formally, let a = p(e, θ) ∈
[0, 1]. Define z(a, θ) by p(z(a, θ), θ) = a, and c by c(a, θ) ≡ κ(z(a, θ)) for all (a, θ).23 The profit is

now t− (1− a)x, and we are in a private values setting, where the menu is (α(·), t(·), x(·)), with

α(θ) the recommended action level (probability of avoiding a loss) for type θ.

Let us also replace (t(·), x(·)) by v(·) = (vl(·), vh(·)), where vh(θ) = u(ω − t(θ)) is the agent’s

utility with no loss, and vl(θ) = u(ω− l+ x(θ)− t(θ)) is the agent’s utility with a loss. Note that

t(θ) = ω − ϕ(vh(θ)) and x(θ) = l − (ϕ(vh(θ))− ϕ(vl (θ))), and so the profit on any given type is

B(α(θ))− ((1− α(θ))ϕ(vl(θ)) + α(θ)ϕ(vh(θ))) ,

where B(a) = ω−(1−a)l. The principal effectively takes ω, pays out the expected loss (1−α(θ))l,

and then provides enough income in each state to give (vl, vh). The principal then maximizes∫ θ̄
θ [B(α(θ))−C(α(θ), S(θ), θ)]h(θ)dθ, where C is defined in Section 6.1, subject to incentive com-

patibility and the type-dependent outside option. For simplicity, we assume that for all u0 and θ,

B(·)− C(·, u0, θ) has an interior optimum.24

Since we are in the linear probability case, IMC is necessary and sufficient for incentive

compatibility, where, since ca = vh− vl from the first-order condition on effort, IMC is equivalent

to v′h − v′l ≥ 0. Thus, the risk faced by the agent is increasing in his type.

We begin by showing that, at any optimal menu, the premium, coverage, and coverage less

premium are each decreasing in θ. To see this, differentiate t and x with respect to θ and recall that

vh ≡ S+ c+(1−α)ca and vl ≡ S+ c−αca. Since t(θ) = ω−ϕh(θ) and x(θ) = l− (ϕh(θ)−ϕl(θ)),
we obtain that t′ = −ϕ′h(1−α)(ca)θ, x

′ = −((1−α)ϕ′h +αϕ′l)(ca)θ, and x′− t′ = −ϕ′lα(ca)θ, each

of which is negative from IMC.

Let αNI(θ) be the optimal effort level when θ has no insurance. That is, ca(αNI(θ), θ) =

u(ω) − u(ω − `). Then, the type-dependent outside option is Ū(θ) = (1 − αNI(θ))u(ω − `) +

αNI(θ)u(ω) − c(αNI(θ), θ), where Ū ′(θ) = −cθ(αNI(θ), θ) by the Envelope Theorem. It remains

the case that by incentive compatibility, S′(θ) = −cθ(α(θ), θ) for all types served. Hence, since

23If p(e, θ) > a for all e, then set c(a, θ) = 0, and if p(e, θ) < a for all e, then set c(a, θ) =∞.
24Sufficient for this is that for each θ, ca(0, θ) = 0 and lima→1 ca(a, θ) = ∞, since then by (31), Ca(0, u0, θ) = 0

and lima→1 Ca(a, u0, θ) =∞ as well.
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caθ < 0, if the agent takes less care in the relationship than outside it–something we will establish–

then their surplus in the relationship will be shallower than their surplus outside the relationship.

Using this, we show that the interval of types served is an interval, with participation binding

only for the highest served type.25 This motivates the following result.

Theorem 3 In any optimal menu, (i) coverage is positive for all types, and strictly positive for all

types in some interval [θ, θ∗), θ∗ > θ; (ii) the outside option is binding at θ∗, but for no lower type,

and the information rent (the difference between the utility with insurance and without) decreases

with type; (iii) effort is distorted upwards from the constrained efficient level (Ba − Ca < 0) and

strictly so for all types except θ; and (iv) coverage is strictly less than full for all types.

To see that coverage is positive and decreasing, if there is any type on whom coverage is

strictly negative (i.e., the agent pays the principal in the event of a loss) then the set of such

types is an interval including θ̄. But, because the agent is risk averse, the principal loses money

on any such type, and so excluding them is directly profitable, and–because it reduces the set of

feasible deviations–lowers the amount of utility that needs to be offered to types still served.

That a positive measure set of agents are always served is less obvious here than when there

is only adverse selection. For example, offering full insurance to the lowest type at an actuarially

fair rate–given the zero level of care that will result–may well be strictly worse for the agent than

autarky, where care will be exercised. We show that starting from no insurance, the drop in effort

inherent in offering a little more insurance is irrelevant, since coverage started at zero, while there

is a first order gain (that the principal can capture) from reducing the risk faced by the agent.26

To see that effort is distorted strictly upwards, note that since the binding participation con-

straint is on the most capable type served, the way to lower the surplus of inframarginal types is to

make the surplus function steeper, which is accomplished by raising effort beyond its constrained

efficient level. Less-than-full coverage then follows since the constrained efficient effort level is

strictly positive, and thus occurs where ca > 0, and thus vh − vl > 0 by the incentive constraint.

9.2 Distortions

To better understand the distortions that the combined problem entail, let us compare our model

with three benchmarks: full information, pure moral hazard, and pure adverse selection.

25In general, problems with a type-dependent outside option are amenable to our tools as long as one can establish
that the outside action–and hence the slope of the outside option–has a useful relationship to the action and hence
the slope of the utility function inside the relationship. If so, then one can pin down that participation binds for
example just for the lowest type, just for the highest type, or just at each end of the range of types served.

26In a pure adverse selection setting, Hendren (2013) shows that if one allows for the presence of agents who suffer
a loss with probability one, then under some conditions the principal excludes all types. Our setting in principle
could have an agent who chooses probability one of a loss, but this does not arise at an optimal menu.
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Full Information. With full information, the firm will optimally offer full insurance to each

type, and require care that solves Ba(αFI(θ))− ϕ′
(
Ū(θ) + c(αFI(θ), θ)

)
ca(αFI(θ), θ) = 0. Com-

pared to this benchmark even θ’s contract is distorted under moral hazard and adverse selection,

since he (along with everyone else) obtains strictly less than full coverage.

Pure Moral Hazard. Next, consider pure moral hazard. Optimal care level will solve

Ba(αMH(θ)) − Ca(αMH(θ), Ū(θ), θ) = 0, with insurance partial for all types. To the extent

that one might typically expect Ca > ϕ′ca, this will result in a lower level of care than in the full

information case. Intuitively, inducing more care from the agent requires putting the agent under

more risk that the principal must compensate.27

In the combined problem, Ba−Ca < 0 for θ > θ, pushing towards more care and less insurance

than with pure moral hazard. But, all types below θ̄ obtain an information rent, so S(θ) > Ū(θ).

If ϕ′ is convex (that is, P ≤ 3A), then Cau0 = ϕ′h−ϕ′l+(ϕ′′h−ϕ′′l )a(1−a)caa > 0, pushing towards

lower care and more insurance. The lowest type has Ba−Ca = 0 and strictly positive information

rents, so effort is lower and insurance higher than with pure moral hazard. At the highest type

there are no information rents and hence care is distorted upwards. In between, the forces battle.

Our conjecture is that care is distorted downward for low types and upwards for high types.

Laffont and Martimort (2001), Chapter 7, analyze a two-type and two-effort case, assuming,

inter alia, that the principal wants both types to exert high effort. They show that the two

informational problems reinforce each other when it comes to distortions. In our setting, where

effort varies endogenously, things are more subtle. For low types (those with the highest risk of

an accident) both the move from full information to pure moral hazard and then the subsequent

move to both moral hazard and adverse selection reduce effort and increase coverage. But, at

higher types, the forces are countervailing.

Pure Adverse Selection. Finally, consider a setting of pure adverse selection. If only a can

be observed, then this problem is simple, falling into our analysis of Section 3.2. Insurance is full,

and effort is determined by Ba−ϕ′ca = caθ
∫ θ
θ ϕ
′h. Effort is distorted down from full information

by the rents of the agent, but up to extract rents from lower types.

But, in most settings, it is e that is observable, not a–the principal can see if the agent’s car

has modern safety features and is garaged in a safe neighborhood, but not whether the agent is

innately attentive. This problem is hard, because the principal can now use two variables–the

effort required and the amount of insurance offered–to screen the agent. One can show that

beginning from the optimal solution to the combined problem with moral hazard and adverse

selection, the principal in the pure adverse selection problem gains by incrementally increasing

effort and decreasing insurance (which in the combined problem are tied together via the incentive

27Note that Ca < ϕ′ca can occur–in particular when at high levels of effort, further increases in effort improve
information, and hence decrease the risk the agent faces. For example, let f(0|1) = 0. Then, as a→ 1, C → ϕ(u0+c),
since near-forcing contracts become feasible, and so, for some region near a = 1, Ca < ϕ′ca.
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constraint, but now can be moved independently). Each change reduces information rents to lower

types. A fuller characterization and comparison of the two solutions is open.

Remark 1 The reparameterization that we used in the insurance application is considerably more

general. It works any time that the action and the type of the agent enter the distribution of the

outcome via an “index.” In particular, assume that f̂(x|e, θ) ≡ f(x|η(e, θ)), where η is strictly

increasing in e, and where the agent has cost of effort κ(e). Then, define a = η(e, θ), and define

c by c(η(e, θ), θ) = κ(e). We can then apply the full weight of the machinery developed so far.

10 Single Crossing and Sufficiency

So far, we have worked with the sufficient condition IMC. In this section, we explore an alternative

sufficient condition that hinges on a single crossing property of v as θ changes. We will find

this condition especially useful below when we turn to the decoupling program and exponential

families, a class of distributions for which contracts can only cross in simple ways as θ varies. It

will also be central to our further exploration of common values.

Say that v satisfies the single crossing condition (SCC ) if for all θ > θ′, v(·, θ) single-crosses

v(·, θ′) from below. This can again be interpreted as incentives getting stronger as θ increases.28

Our next theorem establishes that SCC also implies feasibility.

Theorem 4 If the menu (α, v) is regular and satisfies BFC, FOP, and SCC, then it is feasible.

For intuition, consider a deviation (θA, â), where â = α(θ̂) for some θ̂ > θA, and so we are

above the locus. We will show that the agent is better off, holding fixed the action at â, to increase

his announcement, sliding horizontally to the right until θ̂ is reached, and we are back on locus.

In particular, consider any θ < θ̂, and, consider the effect of a small increase in the announced

type. Under SCC this increases the agent’s income at high signals and lowers it at low signals.

On the locus, the agent is indifferent about this trade-off by (11). But then, above the locus,

where he is working harder, and thus more likely to attain high signals, the trade-off is profitable.

10.1 Decoupling with Exponential Families

Condition SCC gives another tractable class where we can provide primitives for decoupling to

be valid–the exponential families. These includes a vast variety of common parameterized density

functions including the Bernoulli, normal, exponential, Poisson, Gamma, Beta distributions, and

28Note that neither SCC nor IMC implies the other. To see the first direction, note that it may be that IMC holds,
but that the contracts at different θ cross more than once, so that SCC fails. To see the other direction–that SCC
can succeed while IMC fails–consider a setting in which contracts cross only once. In such a setting, the contracts
will cross in the right direction (i.e., SCC holds), if and only if the second-order condition

∫
vθ(x, θ)fa(x|α(θ))dx ≥ 0

is satisfied. This follows from Beesack’s inequality, since fa/f is increasing, and by (11).
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truncations thereof. This thus provides another set of “plug and play” environments in which the

modeler can study models with both moral hazard and adverse selection.

Recall that f is an exponential family if it can be written as f(x|a) = m(a)g(x)eK(a)j(x).

Letting k = K ′ > 0, we have l(x|a) = k(a)j(x) +m′(a)/m(a), so that MLRP holds if and only if

j is increasing in x, and lax(x|a) = k′(a)j′(x) is positive if k is increasing in a. In the next result

we will assume that B (the gross benefit to the principal of the agent’s effort) is linear in a, while

the expected value of the signal given action can have an arbitrary shape.

Recall that ψ solves 1/u′(ψ(τ)) = τ , and that ρ(τ) = u(ψ(τ)).

Assumption 5 ψ is convex, ρ is concave, and 1/ρ′ is strictly concave.

It can be checked that ψ convex is equivalent to P ≥ 2A, that ρ concave is equivalent to

P ≤ 3A, and that 1/ρ′ strictly concave is equivalent to 6A − 4P − P ′/A < 0. Thus, given

P ∈ [2A, 3A], we have that 1/ρ′ is strictly concave if P ′ is not excessively negative. In Example

3, Assumption 5 holds when γ ∈ (0, 1/2).29

We now present our central result of this section.

Theorem 5 Let f be an exponential family with lax ≥ 0, Faa ≥ 0, and Faaa ≤ 0. Assume that

caa/caθ decreases in a for each θ, Baa = 0, and that Assumptions 1 and 5 hold. Then, any solution

to the decoupling problem with α′ ≥ 0 satisfies SCC and hence is optimal.

The proof of this relies on Theorem 4. The key is that since f is an exponential family, any

two distinct HM contracts can cross at most once, since for any a and a′, lx(x|a′)/lx(x|a) =

k(a′)/k(a) and so is independent of x. Assume that the contracts cross the “wrong” way as θ

increases. Then we show that the marginal cost Ca of inducing effort must have decreased, which

we show is inconsistent with a solution to the screening problem.

11 Extensions

11.1 Optimal Exclusion

In this section, we explore optimal exclusion in our setting with both moral hazard and adverse

selection. We are unaware of any related results at this level of generality, especially as we will

show that our conditions are not only necessary, but also sufficient. For any given θ∗, let

α̂(·, θ∗) = arg max
α

∫ θ̄

θ
(B(α(θ))− C(α(θ), S(θ), θ))h(θ)dθ (16)

s.t. S(θ∗) = ū, and S′(θ) = −cθ(α(θ), θ),

29Note that u′ = aκγ−1 and u′′ = −a2κγ−2. Hence, ψ′ = (u′)2/(−u′′) = κγ , and so since κ is linear in w, and
increasing when γ ∈ [0, 1), ψ is convex for all γ ∈ [0, 1). Also, ρ′ = (u′)3/(−u′′) = aκ2γ−1 and so ρ is concave for
all γ ∈ [0, 1/2). Finally, 1/ρ′ = (1/a)κ1−2γ which is strictly concave for all γ ∈ (0, 1/2).
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noting that we have replaced S(θ) = ū by S(θ∗) = ū. Appendix B shows that, for each θ, α̂(θ, ·) is

differentiable in θ∗, and that the restriction of α̂(·, θ∗) to [θ∗, θ̄], characterizes the unique optimal

solution to the principal’s relaxed problem subject to excluding types below θ∗.

For any given θc and θ∗, and for any θ ≥ θc, let Ŝ(θ, θc, θ
∗) = ū −

∫ θ
θc
cθ(α̂(τ, θ∗), τ)dτ be the

surplus to the agent of type θ if the principal excludes types below θc and chooses action profile

α̂(·, θ∗) for types above θc. We then have the following proposition.

Proposition 7 Assume that one of the sufficient conditions for feasibility of the decoupled solu-

tion holds, and that C(·, ·, θ) is convex for each θ.30 Cutoff level θc is optimal only if (B −C)h =

−cθ
∫ θ̄
θc
Cu0hdθ, evaluated at θc, α̂(·, θc) and Ŝ(·, θc, θc). If cθθ ≥ 0 and Cu0a > 0 then this condition

is sufficient as well.

So, at the optimal cutoff, B−C is positive. The necessity direction is both simple and intuitive.

As one expands the range of included types, the direct benefit of adding types near θ is given by

the left-hand side (lhs) of the equation. The rhs reflects that expanding the set of included types

increases the information rent that must be paid to types above the cutoff. At an optimum, these

effects must balance. That this condition is also sufficient is more involved. They key is to show

that the convexity of C(·, ·, θ) implies that profits are concave in the cutoff.

Mirroring previous results in the literature, if h is sufficiently small at θ, then there is a strictly

positive region of exclusion. This is intuitive, as a small amount of exclusion then destroys surplus

on very few agents, but reduces rents to the remaining agents in a first order way. Similarly, if B

is large enough, and h(θ) > 0, then there is no exclusion.

11.2 Common Values

As the insurance application and Remark 1 show, many important examples with a common

value aspect can be fruitfully analyzed with the tools we developed for the private values case.

But, especially once one moves away from the two-outcome case, most problems with common

values cannot be appropriately reparameterized. For example, if a more capable manager can

both accomplish tasks more easily (so that θ enters the disutility of the action) and better (so

that θ enters the distribution over outcomes), then only in very special cases would it be the case

that one needed only to know a single summary statistic of ability and effort to know both the

distribution over outcomes and the cost of the action to the agent.

Given this, we now turn to the general common-values problem. We consider the variation

on the maximization problem (P) in which each of c, f , and B may depend on θ, were we recall

that depending on the context, B may be expected output, but need not be so. Our main goal in

this section is to establish an analog to Theorem 4, showing that a set of conditions centered on

30See Appendix B for a discussion and primitives that ensure the convexity of C(·, ·, θ) for each θ.
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SCC imply feasibility. Intriguingly, an analog to Theorem 1, which centers on IMC, seems more

difficult, a topic to which we will return. We leave exploration of primitives that guarantee SCC

in the common value case for future work.

Our central assumption generalizes the conditions needed on f in the private values case.

Assumption 6 Each of fa/f and fθ/f is increasing in x, with Faθ ≤ 0.

The next example, whose proof is in the Appendix, provides a far from pathological class of

densities that satisfies Assumption 6.

Example 5 Let g be a parameterized family of densities satisfying MLRP, where for each a,

g(·|a) is strictly increasing, and where g(x|·) is bounded away from zero. Let r be an arbitrary

measurable strictly positive function on [x, x], and define

f(x|a, θ) =
r(x)gθ(x|a)∫
r(s)gθ(s|a)ds

.

Assume that (fθ/f)θ + 1 ≥ 0 for all (x, a, θ).31 Then, Assumption 6 holds.32,33

To begin our analysis, note that the three first order conditions (FOC ) become∫
vθ(x, θ)f(x|α(θ), θ)dx = 0,∫

v(x, θ)fa(x|α(θ), θ)dx− ca(α(θ), θ) = 0,

and

S′(θ) =

∫
v(x, θ)fθ(x|α(θ), θ)dx− cθ(α(θ), θ),

where S′ now reflects that as the agent’s type changes, there is a direct effect through fθ, and

where S(θ) = ū as before. This in hand, let us turn to global incentive compatibility.

Proposition 8 Assume that f satisfies Assumption 6. If (α, v) is a regular menu that satisfies

the FOCs, with α increasing, and with v satisfying SCC, where for each θ, v(·, θ) is increasing

and bounded, then (α, v) is feasible.

31That is, the elasticity of f with respect to θ is at least −1. Equivalent is that for all a,

log g(x|a)−
∫

log g(s|a)
r(s)gθ̄(s|a)∫
r(t)gθ̄(t|a)dt

ds+
1

θ̄
≥ 0,

which is automatic as long as either θ̄ is not too large or g(x|a) is not too much below its (weighted) average.
32See the Appendix for the proof.
33The density f can be reparameterized as a function of transformed effort (as in Remark 1) if and only if f is

an exponential family, which holds if and only if g is also an exponential family. Except in this case, f depends in
a non-trivial way on both a and θ.
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To see why a generalization of IMC is hard in the common values case, return to the argu-

ment from Section 5. Critical to that argument was that movements from left to right as one

worked along the locus L were irrelevant. But, in the common-values setting, this argument falls

apart, since different types–who have different distributions over output for any given action–have

different preferences about changes in the contract.

11.3 Random Mechanisms

So far, we have restricted the principal to deterministic menus. In this section, we leverage an

idea of Strausz (2006) to show that when decoupling works, then the (deterministic) menu it

generates is in fact optimal even when randomization is allowed. In particular, consider a setting

in which first the agent announces a type, and then, based on the announcement, the principal

randomizes over pairs (ṽ, a) consisting of a compensation scheme and recommended action. The

agent needs to be willing to report his type honestly given the lottery he faces, and to follow the

recommended action for each realized pair (ṽ, a).

Proposition 9 Let C (·, ·, θ) be stricty convex for each θ, and let the (deterministic) decoupled

solution (α, v) be feasible.34 Then, (α, v) remains optimal even if randomization is allowed.

The key to the proof is to consider any randomized solution to the relaxed screening problem.

Since B−C is strictly concave, replacing actions and surplus by their expections raises the value

of the objective function. But, further, because −cθ is convex in effort, this menu requires less

surplus to be given to the agent than the expected surplus in the randomized mechanism.

12 Concluding Remarks

We study a canonical problem with both moral hazard and screening. We derive necessary

conditions for a menu (α, v) to be feasible. In contrast to the standard screening problem it is

not enough that the recommended action rises as the agent becomes more capable. Rather, our

necessary conditions require that the recommended action rises fast enough that, in a specific

sense, more capable agents face stronger incentives. We also provide two different sufficient

conditions for a menu to be feasible. The first requires that as the agent becomes more capable,

the recommended action rises fast enough so that his marginal cost of effort rises. The second

requires that as the agent becomes more capable, his contract becomes steeper in the sense of

single crossing. Each of our two sufficient conditions can thus be interpreted as a stronger version

of the requirement that more capable agents face stronger incentives.

We explore the question of when one can decouple the problem by first solving the moral

hazard problem for each action-surplus-type triple and then solving a (non-quasilinear) screening

34For example, assume that the conditions of one of Propositions 4, 5, or 6, or of Theorems 2 or 5 hold.
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problem for the resultant cost function. We provide several broad classes of primitives where

decoupling is guaranteed to work, providing conditions under which decoupling is valid for output

linear in effort, for the two outcome case, for a very general case with large enough reservation

utility, for square root utility, and when the conditional distribution of output is an exponential

family. Altogether, these classes subsume a large number of economic applications.35 We also

provide a case where decoupling fails, highlighting the need for such results. When decoupling

does work, we have the economically important implication that the optimal mechanism has

the form that the agent, by choice of his announcement of type, is choosing from a menu over

HM contracts. Thus, everything that we know from the pure moral hazard problem carries over

into the setting which also includes adverse selection, and everything that we know from the

pure adverse selection problem carries through when there is also moral hazard. We apply our

model to derive new predictions about insurance markets when both adverse selection and moral

hazard are at play, examining in particular the question of whether moral hazard and adverse

selection together create larger or smaller distortions than either alone. Finally, we examine

optimal exclusion, we begin the generalization of our set-up to one of common values, and we

show that decoupled menus remain optimal even if the principal can randomize.

There are several open problems for future research. We name two: a full analysis of the

common values case, and the extension to a dynamic setting.

Appendix A Proofs

The following lemma (Beesack (1957)) is central to our analysis.

Lemma 5 (Beesack’s inequality). Let g : X → R be an integrable function with domain an

interval X ⊆ R. Assume that g is never first strictly positive and then strictly negative, and that∫
X g(x)dx ≥ 0. Then, for any positive increasing function h : X → R such that gh is integrable,∫

X
g(x)h(x)dx ≥ 0.

If h is strictly increasing, and g is non-zero on some interval of positive length, then the inequality

is strict. If
∫
X g(x)dx = 0, then h need not be positive.

35To name a few, they can be applied to the insurance problem that we thoroughly analyze in Section 9 and
variations thereof; to the ubiquitous contracting problem between shareholders and CEO, with the added friction
that the CEO talent is private information; or to extensions to a risk averse agent of problems traditionally analyzed
under risk neutrality, such as Laffont and Tirole (1986) procurement problem (or a variation but with standard
moral hazard), or the project-owner and project-operator contracting problem in Lewis and Sappington (2001) (see
also Lewis and Sappington (2000)).
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A.1 Proofs for Section 3

Proposition 10 Assume that caaθθ and caθθθ exist. If h is log-concave and −caθ is log-convex in

θ, then α′ > 0 everywhere.

Proof Note that the numerator of (7) rearranges to

−caθθ
caθ

+
h′

h
+

(
caθĈu0 + Ĉaθ − cθĈau0

caθĈu0

)
Ĉu0h∫ θ̄
θ Ĉu0h

> 0.

Since in the pure adverse selection case Ĉ(a, u0, θ) = ϕ(u0 + c(a, θ)), we have that Ĉa = ϕ′ca and

Ĉu0 = ϕ′, and hence Ĉaθ = ϕ′′cθca + ϕ′caθ, and Ĉau0 = ϕ′′ca. From this, the term in parenthesis

equals 2, and thus α′ > 0 for any given θ if and only if for all θ,

z(θ) ≡ −caθθ
caθ

+
h′

h
+

2ϕ′h∫ θ̄
θ ϕ
′h
> 0. (17)

Note that z(θ̄) > 0, for the first two terms are bounded while the last term diverges as θ goes

to θ̄. Hence, by continuity, there is a smallest type θ0 ∈ [θ, θ̄) such that z(θ) > 0 for all θ > θ0.

We wish to show that θ0 = θ. Towards a contradiction, assume that θ0 > θ. Then z(θ0) = 0, and

z′(θ0) ≥ 0 (since z(θ) > 0 for all θ > θ0). We will show that these two properties cannot hold

simultaneously under the stated assumptions on h and caθ, yielding the desired contradiction.

Assume that z(θ0) = 0 and consider z′(θ0). The second term in (17) is decreasing in θ since

h is log-concave. Note next that(
caθθ
−caθ

)
θ

=

(
∂

∂a

caθθ
−caθ

)
α′ +

∂

∂θ

caθθ
−caθ

,

where we recall that we use (·)θ as shorthand for the total derivative with respect to θ. When

we evaluate this expression at θ = θ0, the first term vanishes since α′(θ0) = 0, and the second

term is negative since −caθ is log-convex in θ. Hence, a necessary condition for z′(θ0) ≥ 0 is that(
ϕ′h/

∫ θ̄
θ ϕ
′h
)
θ

is positive at θ = θ0, which holds if and only if

ϕ′′caα
′h

∫ θ̄

θ0

ϕ′h+ ϕ′h′
∫ θ̄

θ0

ϕ′h+ ϕ′2h2 ≥ 0

when evaluated at θ = θ0. Since the first term vanishes at θ0, we obtain ϕ′h′
∫ θ̄
θ0
ϕ′h+ ϕ′2h2 ≥ 0,

which holds if and only if
h′

h
+

ϕ′h∫ θ̄
θ0
ϕ′h
≥ 0.
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But this implies that

z(θ0) = −caθθ
caθ

+
h′

h
+

2ϕ′h∫ θ̄
θ0
ϕ′h

> 0,

contradicting that z (θ0) = 0. Hence, z(θ0) = 0 and z′(θ0) ≥ 0 cannot hold simultaneously. �

We now provide sufficient conditons for µa ≥ 0 and λa ≥ 0.

Lemma 6 Let l be submodular in x and a, i.e., lxa ≤ 0. Then, µa ≥ 0. If in addition f is

log-concave in a and ρ is concave, then λa ≥ 0 as well.

Proof From the first-order condition of the cost-minimization problem plus the binding partici-

pation and incentive constraints, we obtain the following system of equations in λ and µ:∫
ρ(λ+ µl(x|a))f(x|a)dx = c(a, θ) + u0 (18)∫
ρ(λ+ µl(x|a))fa(x|a)dx = ca(a, θ). (19)

By differentiating this system and manipulating (see CS for details), one arrives at

λa = −µa
∫
lξ − µ

∫
laξ and µa =

1

varξ(l)

(
1∫
ρ′f

(
caa −

∫
ρfaa

)
− µ covξ(la, l)

)
, (20)

where ξ is the density with kernel ρ′ (λ+ µl (·|α (θ))) f (·|α (θ)) To see that µa > 0, note that

caa −
∫
ρfaa ≥ 0 by FOP, while covξ(la, l) < 0 under the assumption lax < 0. Turning to λa,

notice that
∫
lξ =s

∫
lρ′f =

∫
ρ′fa, where we recall that =s indicates that the objects on either

side have strictly the same sign. Now,
∫
ρ′fa is negative by Beesack’s inequality (see the beginning

of this section), since fa single-crosses zero from below,
∫
fa = 0, and ρ′ is positive and decreasing

in x. Since µa ≥ 0, it follows that λa ≥ 0 if
∫
laξ =s

∫
laρ
′f ≤ 0. But this holds since f is

log-concave in a, which is equivalent to la ≤ 0. �

A.2 Proofs for Section 4

Proof of Proposition 1 Let us first show that α is weakly increasing. For any two types θ′ > θ

incentive compatibility implies∫
v(x, θ′)f(x|α(θ′))dx− c(α(θ′), θ′) ≥

∫
v(x, θ)f(x|α(θ))dx− c(α(θ), θ′), and∫

v(x, θ)f(x|α(θ))dx− c(α(θ), θ) ≥
∫
v(x, θ′)f(x|α(θ′))dx− c(α(θ′), θ).

Adding these inequalities yields c(α(θ′), θ′) + c(α(θ), θ) ≤ c(α(θ′), θ) + c(α(θ), θ′), which, since c

is submodular in (a, θ), implies that α(θ′) ≥ α(θ).
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The condition S(θ) ≥ ū is immediate from our simplifying assumption of full participation.

Equation (9) is the first-order condition for the agent’s choice of effort, while (11) is the one for

his choice of what type to report (which holds given the assumed continuity of α and the validity

of passing the derivative throught the integral). Condition (10) captures that for the agent not to

want to locally misrepresent his type and change his action along the locus (θ, α(θ)), it must be

that S′(θ) = −cθ(α(θ), θ). Formally, since c is continuously differentiable in (a, θ), the conditions

of Theorem 2 of Milgrom and Segal (2002) hold, and so S is absolutely continuous and hence

differentiable almost everywhere and thus satisfies the integral condition (10).

To see that α is strictly increasing, let us consider the second order necessary conditions. Fix

the true type of the agent θ, and differentiate the agent’s objective function
∫
v(x, θ′)f(x|a)dx−

c(a, θ) as a function of the reported type, θ′, and the chosen action, a, twice. Evaluating the

derivatives at the candidate menu, we obtain the following Hessian matrix:

M =

[ ∫
vθθ(x, θ)f(x|α(θ))dx

∫
vθ(x, θ)fa(x|α(θ))dx∫

vθ(x, θ)fa(x|α(θ))dx
∫
v(x, θ)faa(x|α(θ))dx− caa(α(θ), θ)

]
.

The second-order conditions for optimality by the agent require that the diagonal elements of M

are negative, and the determinant of M is positive.

Given that feasibility implies that α is increasing and hence almost everywhere differentiable,

to show that α is strictly increasing, we need only to rule out that at some point, α′ = 0. To see

this, begin by noting that (9) and (11) are identities in θ. Differentiating (11) yields∫
vθθ(x, θ)f(x|α(θ))dx = −α′(θ)

∫
vθ(x, θ)fa(x|α(θ))dx. (21)

Hence, if α′ = 0, then
∫
vθθ(x, θ)f(x|α(θ))dx = 0. Similarly, differentiating (9) yields

α′
(∫

v(x, θ)faa(x|α(θ))dx− caa(α(θ), θ)

)
= caθ(α(θ), θ)−

∫
vθ(x, θ)fa(x|α(θ))dx, (22)

and so if α′ = 0, then,
∫
vθ(x, θ)fa(x|α(θ))dx = caθ(α(θ), θ) < 0. But then, detM = −(caθ(α(θ), θ))2 <

0, violating the second-order necessary conditions.

Finally, let us establish that the second order necessary conditions hold if and only if (12)

holds. Since α′ > 0, it follows from (21) that
∫
vθθ(x, θ)f(x|α(θ))dx ≤ 0 if and only if (12) holds.

Similarly, from (22),
∫
vfaa− caa ≤ 0 when evaluated at (α, v) if and only if caθ−

∫
vθfa ≤ 0, and

since c is submodular in (a, θ), it suffices for this that (12) holds.

Finally, note that using (21) and (22) we can rewrite M as

M =

[
−α′(θ)

∫
vθ(x, θ)fa(x|α(θ))dx

∫
vθ(x, θ)fa(x|α(θ))dx∫

vθ(x, θ)fa(x|α(θ))dx 1
α′(θ)

(
caθ(α(θ), θ)−

∫
vθ(x, θ)fa(x|α(θ))dx

) ] ,
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and so detM = −caθ(α(θ), θ)
∫
vθ(x, θ)fa(x|α(θ))dx. Since caθ < 0, the determinant is positive if

and only if
∫
vθ(x, θ)fa(x|α(θ))dx ≥ 0, thereby completing the proof. �

A.3 Proofs for Section 5

Proof of Lemma 1 Assume wlog that θA > θ. Then using (10) we obtain

S(θ)− S(θA) =

∫ θA

θ
cθ(α(s), s)ds >

∫ θA

θ
cθ(α(θA), s)ds = c(α(θA), θA)− c(α(θA), θ),

where the inequality follows since α is strictly increasing and c is strictly submodular in (a, θ).

Hence, S(θ) > S(θA) + c(α(θA), θA) − c(α(θA), θ) =
∫
v(x, θA)f(x|α(θA))dx − c(α(θA), θ), as

required. �

Proof of Theorem 1 We proceed in several steps. Denote by γ the generalized inverse of α (α need

not be continuous everywhere; it can jump up a countable number of times).

Step 1. Since S(θ) ≥ u, (10) implies that S(θ) ≥ u for all θ, and thus participation holds.

Step 2. From Lemma 1, it suffices to show that every deviation (θA, â) /∈ L is dominated by

some on locus deviation. We focus on deviations with â > α(θA) (the other case is similar).

Let the agent’s true type be θT . If θT ≤ θA, then∫
v(x, θA)f(x|â)dx−

∫
v(x, θA)f(x|α(θA))dx ≤ c(â, θA)− c(α(θA), θA) ≤ c(â, θT )− c(α(θA), θT ),

where the first inequality follows from the first-order condition (9), from FOP, and from â > α(θA),

and the second since c is submodular. But then, the agent is better off with (θA, α(θA)) ∈ L.

Step 3. If for any given θ̃, â > α(θ̃) and θA ≤ θ̃, then deviation (θA, â) is dominated for type θ̃

by (θA, α(θ̃)). To see this, consider any action a ∈ [α(θ̃), â]. Then∫
v(x, θA)fa(x|a)dx ≤

∫
v(x, θA)fa(x|α(θA))dx = ca(α(θA), θA) ≤ ca(α(θ̃), θ̃) ≤ ca(a, θ̃),

where the first inequality follows from the FOP, the equality follows by (9), the second inequality

follows by IMC, and the third by convexity of c in a. Hence,
∫
v(x, θA)fa(x|a)dx ≤ ca(a, θ̃) for

any a ∈ [α(θ̃), â], which implies that θ̃’s expected utility is decreasing in a in that range, and so

θ̃ is at least as well off with deviation (θA, α(θ̃)) as with (θA, â).

From Step 2, and from Step 3 applied to θ̃ = θT , we can restrict attention to deviations (θA, â)

with θA ≤ θT and â ≤ α(θT ).

Step 4. Let (θA, â) be such that â > α(θA) and (γ(â), â) ∈ L, i.e., â = α(γ(â)). We will show

35



that
∫
v(x, γ(â))f(x|â)dx ≥

∫
v(x, θA)f(x|â)dx and hence,∫

v(x, γ(â))f(x|â)dx− c(â, θT ) ≥
∫
v(x, θA)f(x|â)dx− c(â, θT ),

showing that (θA, â) is dominated for θT by (γ (â) , â) ∈ L.

Define Q by

Q(a) ≡ S(γ(a)) + c(a, γ(a))−
∫
v(x, θA)f(x|a)dx. (23)

It is immediate from the definition thatQ(α(θA)) = 0, since γ(α(θA)) = θA, and thus S(γ(α(θA))) =

S(θA) while the second and third terms on the rhs of (23) sum to −S(θA). Also, Q is differentiable

a.e. since S and γ are, and has derivative given by

Q′(a) = Sθ(γ(a))γ′(a) + ca(a, γ(a)) + cθ(a, γ(a))γ′(a)−
∫
v(x, θA)fa(x|a)dx

= ca(a, γ(a))−
∫
v(x, θA)fa(x|a)dx,

where the equality follows since Sθ = −cθ on the locus and since γ′ = 0 when the generalized

inverse is not on the locus (i.e., where α jumps). Now, for any a ∈ (α(θA), â), note that since a >

α(θA), then γ(a) ≥ θA. We claim that ca(a, γ(a)) ≥ ca(α(θA), θA). This is immediate if (γ(a), a) ∈
L by IMC. Otherwise, note that for all θ ∈ [θA, γ(a)), ca(a, θ) ≥ ca(α(θ), θ) ≥ ca(α(θA), θA), where

the first inequality is by convexity of c in a, noting that θ < γ(a) implies α(θ) < a, and the second

inequality is by IMC. But then, taking θ → γ(a), ca(a, γ(a)) ≥ ca(α(θA), θA) as claimed. Note

also that
∫
v(x, θA)fa(x|a)dx ≤

∫
v(x, θA)fa(x|α(θA))dx by FOP. Hence, for each θ where Q is

differentiable, Q′(a) ≥ ca(α(θA), θA)−
∫
v(x, θA)fa(x|α(θA))dx = 0, where the equality is simply

(9). Hence, in particular, Q(â) ≥ 0. But, by definition of S, and since (γ(â), â) ∈ L, we have∫
v(x, γ(â))f(x|â)dx = S(γ(â)) + c(â, γ(â)), and hence∫

v(x, γ(â))f(x|â)dx−
∫
v(x, θA)f(x|â)dx = Q (â) ≥ 0,

completing the proof of this step.

Step 5. Let (θA, â) be such that â > α(θA) and â 6= α(γ(â)). Then α jumps at θJ = γ(â) with

endpoints a = limε↓0 α(θJ − ε) and a = limε↓0 α(θJ + ε) and with â ∈ [a, a]. Let v and v̄ be the

associated limit contracts. We claim∫
v(x)f(x|a)dx− c(a, θJ) = S(θJ) and

∫
v(x)fa(x|a)dx− ca(a, θJ) = 0 (24)

and similarly at ā. To see the first equality, note that by definition,
∫
v(x, θ)f(x|α(θ))dx −

c(α(θ), θ) = S(θ) for all θ < θJ , and then use the definitions of a and v, uniform convergence of
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Figure 2: IMC . Under IMC, a deviation by θJ to q1 is dominated by one to q2, which in turn is
dominated by q3, which, from the point of view of θJ is equivalent to q4. But then, from the point
of view of θT , who has a lower incremental cost of effort, the (on-locus) point q4 also dominates
q1, and telling the truth and taking the recommended action is better yet.

v(·, θ) to v as θ ↑ θJ , and continuity of S. The second equality similarly follows from (9).

Note that since â ≤ α(θT ), it follows that θT ≥ θJ . If θA = θJ , then (θA, â) is no better

than (θJ , α (θJ)), by (9) and FOP. We are thus back on locus, and done. So, assume θA < θJ

in what follows. We will show that (θT , α(θT )) dominates (θA, â) for θT . To this end, define

v1 =
∫
v(x, θA)f(x|â)dx, v2 =

∫
v(x, θA)f(x|a)dx, v3 =

∫
v(x)f(x|a)dx, and v4 =

∫
v̄(x)f(x|ā)dx.

These give the payoff from income at points q1, ..., q4, in Figure 2, where v3 reflects a limit from

the left and v4 a limit from the right.

We claim

v4 − c(ā, θJ) ≥ v1 − c(â, θJ). (25)

To see this, note that, v1−c(â, θJ) ≤ v2−c(a, θJ) ≤ v3−c(a, θJ) = S(θJ) = v4−c(ā, θJ), where the

first inequality applies Step 3 at θ̃ = θJ , the second inequality applies Step 4, and the equalities

are by (24). But then, since c is submodular, v1 − c(â, θT ) ≤ v4 − c(ā, θT ) ≤ S(θT ), where the

second inequality uses Lemma 1 and the fact that v4 − c(ā, θT ) is θT ’s limit payoff to imitating

θJ + ε on locus. This completes the proof of Step 5 and the theorem. �
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A.4 Proofs for Section 6

Proof of Proposition 3 Sufficiency follows from Theorem 1, since FOP is automatic when faa = 0.

For necessity, note that since (α, v) is feasible, α is increasing and hence differentiable almost

everywhere. Where α jumps, ca jumps as well. Thus, it is enough to show that where α is

differentiable (ca(α(θ), θ))θ ≥ 0. But since (9) holds as an identity in θ, we can differentiate both

sides to arrive at

(ca(α(θ), θ))θ =

(∫
v(x, θ)fa(x|α(θ))dx

)
θ

=

∫
vθ(x, θ)fa(x|α(θ))dx ≥ 0,

where the second equality follows from faa = 0 and the inequality follows from the second-order

condition using Proposition 1. �

Prior to proving Proposition 4, we will need three lemmas. The first two will play an ongoing

role in our analysis.

Lemma 7 If Assumption 1 holds, then a sufficient condition for the second-stage screening so-

lution to satisfy IMC is that (
2λ+ µa + µ

caaθ
caθ

)
caa ≥ Caa −Baa. (26)

for each (α(θ), S(θ), θ).

Proof Recall that α′ is given by (7), and that IMC is the condition that α′ ≥ −caθ/caa for all θ.

Hence, rearranging, IMC holds if and only if for all θ,(
−caθθcaa + caθcaa

h′

h
+ caθcaaθ

)∫ θ̄

θ
Cu0h+ (caθCu0 − Cau0cθ + Caθ)hcaa ≤ −caθ(Baa − Caa)h,

(27)

noting that the denominator on the rhs of (7) is strictly negative. The bracketed term on the lhs

has the sign of (log (−caθ/hcaa))θ which, for each a, is negative by assumption. Hence it suffices

that

(caθCu0 − Cau0cθ + Caθ) caa ≤ −caθ(Baa − Caa). (28)

But, from Section 3.3, Cu0 = λ, Cau0 = λa, Cθ = λcθ+µcaθ, and Cθa = λacθ+λcaθ+µacaθ+µcaaθ.

Thus

caθCu0 − Cau0cθ + Caθ = 2λcaθ + µacaθ + µcaaθ, (29)

and the result follows. �

The objects λ, µ, and Caa are each complicated functions of the primitives, and so for further

progress, we need to break them into more manageable objects. The following lemma goes part
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of the way in achieving this task. It relies on Lemma 7 of Chade and Swinkels (2019) (CS )

characterizing Caa. Recall that ρ is the function that transforms 1/u′ into u.

Lemma 8 If Assumption 1 holds, then a sufficient condition for the second-stage screening so-

lution to satisfy IMC is that for each θ,(
λ+ µa + µ

caaθ
caθ

)
caa ≥ µ

(
caaa −

∫
vfaaa −

∫
vxlFaa

)
+
(
µ2
avarξ(l)− µ2 varξ(la)

) ∫
ρ′f−Baa,

(30)

where for each θ, v is the HM contract implementing action α(θ) at surplus S(θ) for θ and ξ is

the density with kernel ρ′(λ+ µl(·|α(θ)))f(·|α(θ)).

Proof From CS, Lemma 7,

Caa = λcaa + µ

(
caaa −

∫
vfaaa −

∫
vxlFaa

)
+

(∫
ρ′f

)(
µ2
avarξ(l)− µ2 varξ(la)

)
and so, substituting into (26), and cancelling λcaa from each side yields the result. �

Lemma 9 Let G and Ĝ be two cdf’s with finite support, with G MLRP-dominated by Ĝ. Then,

covG(s2, s)

varG(s)
≤
covĜ(s2, s)

varĜ(s)
.

For intuition, note that covG(s2, s)/varG(s) is the slope of the best linear fit to s2 under G,

and that Ĝ moves probability mass rightward from G and hence to where s2 has a higher slope.

Proof Let T be any continuous distribution. By Theorem 1 in Cuadras (2002) specialized to our

setting, for any C2 function ζ of q,

covT (ζ(q), q) =

∫ (∫
(T (min(q, y))− T (q)T (y))dy

)
ζ ′(q)dq

=

∫ (∫ q

l
(T (y)− T (q)T (y))dy +

∫ l̄

q
(T (q)− T (q)T (y))dy

)
ζ ′(q)dq

=

∫
MT (q)ζ ′(q)dq,

where MT (q) = (1− T (q))
∫ q
l T (y)dy + T (q)

∫ l̄
q (1− T (y))dy. Thus, since varT (q) = covT (q, q),

covT (q2, q)

varT (q)
=

2
∫
MT (q)qdq∫
MT (q)dq

= 2

∫
mT (q)qdq

where mT (·) is the density given by MT (·)/
∫
MT (q)dq. Since q is increasing, it is thus sufficient

for the result that mĜ/mG, or equivalently, that MĜ/MG is increasing.
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Now, MT (q) = T
(
l̄ − q −

∫
T
)

+
∫ q
l T = T (µT − q) +

∫ q
l T , where µT is the expectation of

q under T . Thus, M ′T = q(µT − q), and so,

1

g

(
MĜ (q)

MG (q)

)
q

=s
ĝ

g
(µĜ − q)

(
G(µG − q) +

∫ q

l
G

)
− (µG − q)

(
Ĝ(µĜ − q) +

∫ q

l
Ĝ

)
≡ Z(q).

We thus have

Z ′ =

(
ĝ

g

)
q

(
µĜ − q

)(
G (µG − q) +

∫ q

l
G

)
− ĝ

g

(
G (µG − q) +

∫ q

l
G

)
+
ĝ

g

(
µĜ − q

)
g (µG − q)

+ Ĝ
(
µĜ − q

)
+

∫ q

l
Ĝ− (µG − q) ĝ

(
µĜ − q

)
=

((
ĝ

g

)
q

(
µĜ − q

)
− ĝ

g

)(
G (µG − q) +

∫ q

l
G

)
+ Ĝ

(
µĜ − q

)
+

∫ q

l
Ĝ.

Now, if µG − q 6= 0, then, solving Z = 0 for Ĝ(µĜ − q) +
∫ q
l Ĝ, replacing and cancelling

G(µG − q) +
∫ q
l G, we have

Z ′ =s

(
ĝ

g

)
q

(µĜ − q) +

(
ĝ

g

)
µĜ − µG
µG − q

.

This expression is strictly positive on [l, µG), since q < µG < µĜ, and since by the premise, ĝ/g

is increasing. Thus, any crossing of 0 by Z on [l, µG) is strictly upward, and so, since Z(l) = 0,

Z is positive on [l, µG). Similarly, any crossing of 0 by Z on (µĜ, l̄] is strictly downward, and so,

since Z(l) = 0, Z is positive on (µĜ, l̄]. Note finally that Z(q) > 0 on [µG, µĜ] since µĜ − q and

−(µG − q) are positive, with one of them strictly so. Thus, Z is everywhere positive. But then,

MĜ/MG is increasing, and we are done. �

Proof of Proposition 4 For the linear case (30) reduces to(
λ+ µa + µ

caaθ
caθ

)
caa ≥ µcaaa +

(
µ2
avarξ(l)− µ2 varξ(la)

) ∫
ρ′f ,

where, since caa/caθ is increasing in a, and since in the linear case la = −l2, it suffices that

λcaa ≥ −µacaa +
(
µ2
avarξ(l)− µ2 varξ(l

2)
) ∫

ρ′f.

But, from (20),

µa =
1

varξ(l)

(
1∫
ρ′f

(
caa −

∫
ρfaa

)
− µ covξ(la, l)

)
=

1

varξ(l)

(
1∫
ρ′f

caa + µ covξ(l
2, l)

)
.
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Substituting, it suffices that

λcaa ≥ −
1

varξ(l)

(
1∫
ρ′f

caa + µ covξ(l
2, l)

)
caa+

(
1

varξ(l)

(
1∫
ρ′f

caa + µ covξ(l
2, l)

)2

− µ2 varξ(l
2)

)∫
ρ′f ,

and so, expanding the squared term, cancelling, and rearranging, it suffices that

λcaa ≥ caaµ
covξ(l

2, l)

varξ(l)
+

(∫
ρ′f

)
µ2

varξ(l)

((
covξ(l

2, l)
)2 − varξ(l2)varξ(l)

)
.

We are thus done if (i) covξ(l
2, l) ≤ 0 and (ii)

(
covξ(l

2, l)
)2 − varξ(l

2)varξ(l) ≤ 0. Now,

covF (l2, l) = skewF (l), since EF (l) = 0. But, since ρ is concave, ξ is MLRP -dominated by

f . It follows that the distribution ξ̂ on l generated by ξ is MLRP -dominated by the distribution

f̂ on l generated by f .36 Result (i) then follows from Lemma 9. To see (ii), note that

(
covξ(l

2, l)
)2−varξ(l2)varξ(l) =

(
Eξ
[(
l2 − Eξ

(
l2
))

(l − Eξ (l))
])2−Eξ [(l2 − Eξ

(
l2
))2]Eξ [(l − Eξ (l))2

]
,

which is negative by the Cauchy-Schwartz inequality. �

Proof of Lemma 2 For each a, and since EF (l) = 0, we need

skewF (l) =

∫
l3f =

∫ (
fH − fL

afH + (1− a)fL

)3

(afH + (1− a)fL)dx ≤ 0.

But,
∂

∂a

∫
(fH − fL)3

(afH + (1− a)fL)2dx = −2

∫
(fH − fL)4

(afH + (1− a)fL)3
dx < 0.

So, it is enough that the relevant inequality holds at a = 0, i.e., that, letting r = fH/fL,∫ (
fH − fL
fL

)3

fLdx =

∫
(r(x)− 1)3fL(x)dx ≤ 0.

Let r(x∗) = 1, and for x ∈ [x∗, 1], define χ(x) ∈ [0, x∗] by∫ x∗

χ(x)
(1− r(s))fL(s)ds =

∫ x

x∗
(r(s)− 1)fL(s)ds,

where χ(x∗) = x∗, χ(1) = 0 (using that fH and fL are densities), and for all x > x∗,

χ′(x) =
r(x)− 1

r(χ(x))− 1

fL(x)

fL(χ(x))
< 0.

36That is, ξ̂(l) = ξ̂
(
l−1(l|a)

)
/lx
(
l−1(l|a)

)
, and similarly for f̂ .
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Now, changing variables using s = χ(x), we obtain∫ x∗

0
(r(s)− 1)3fL(s)ds =

∫ χ(x∗)

χ(1)
(r(s)− 1)3fL(s)ds

=

∫ x∗

1
(r(χ(x))− 1)3fL(χ(x))χ′(x)dx

=

∫ x∗

1
(r(χ(x))− 1)3fL(χ(x))

r(x)− 1

r(χ(x))− 1

fL(x)

fL(χ(x))
dx

= −
∫ 1

x∗
(r(χ(x))− 1)2(r(x)− 1)fL(x)dx,

where the first equality is by construction of χ, the second by the Substitution Theorem, and the

third by the expression for χ′. Thus,∫ 1

0
(r(x)− 1)3fL(x)dx =

∫ 1

x∗
[(r(x)− 1)2 − (1− r(χ(x)))2](r(x)− 1)fL(x)dx.

and so, since r(x)− 1 > 0 on (x∗, 1], it is enough that the term in square brackets is everywhere

negative, i.e., that 1− r(χ(x)) ≥ r(x)− 1, or, equivalently, that

j(x) ≡ 2− r(χ(x))− r(x)

is positive for all x ∈ [x∗, 1]. Now, since r(x∗) = 1, and since χ(x∗) = x∗, we have j(x∗) = 0, and

j′ = −r′(χ(x))χ′(x)− r′(x)

= r′(χ(x))
r(x)− 1

1− r(χ(x))

fL(x)

fL(χ(x))
− r′(x),

and so, where j ≤ 0, and so r(x)− 1 ≥ 1− r(χ(x)) ≥ 0,

j′ ≥ r′(χ(x))
fL(x)

fL(χ(x))
− r′(x)

which is positive as long as r is concave and fL is increasing. Hence, j is everywhere positive on

[x∗, 1], and we are done. �

Proof of Proposition 5 Since C(a, u0, θ) = aϕh + (1− a)ϕl,

Ca(a, u0, θ) = ϕh − ϕl + a (1− a) caa
(
ϕ′h − ϕ′l

)
. (31)
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Thus,

Caa(a) =
(
ϕ′h(2− 3a)− ϕ′l (1− 3a)

)
caa +

(
a− a2

) (
caaa

(
ϕ′h − ϕ′l

)
+ c2

aa

(
ϕ′′h(1− a) + ϕ′′l a

))
≥

(
ϕ′l + ϕ′h(2− 3a)− ϕ′l (2− 3a)

)
caa +

(
a− a2

)
caaa

(
ϕ′h − ϕ′l

)
>

(
ϕ′h − ϕ′l

)
(2− 3a) caa +

(
a− a2

)
caaa

(
ϕ′h − ϕ′l

)
,

and so (14) is sufficient for Caa > 0.

From Lemma (7) and (28), and using that Baa = 0, strict IMC is guaranteed if

(caθCu0 − Cau0cθ + Caθ) caa < caθCaa. (32)

But, Cu0 = aϕ′h + (1− a)ϕ
′
l, and so Cau0 = ϕ′h − ϕ′l + a (1− a) caa (ϕ′′h − ϕ′′l ), and

Caθ = ϕ′h (cθ + (1− a) caθ)− ϕ′l (cθ − acaθ) + a (1− a) caaθ
(
ϕ′h − ϕ′l

)
+a (1− a) caa

(
ϕ′′h (cθ + (1− a) caθ)− ϕ′′l (cθ − acaθ)

)
.

Substituting these expressions into (32) and manipulating, we want(
caθ

(
ϕ
′
l + ϕ′h

)
+ a (1− a) [caacaθ

(
ϕ′′h (1− a) + ϕ′′l a

)
+ caaθ

(
ϕ′h − ϕ′l

)
]
)
caa

< caθcaa
(
ϕ′h(1− a) + ϕ′la

)
+ caθ

(
(1− 2a) caa +

(
a− a2

)
caaa

) (
ϕ′h − ϕ′l

)
+caθa (1− a) c2

aa

(
ϕ′′h(1− a) + ϕ′′l a

)
,

or, caacaθϕ
′
l + [a (1− a) (caacaaθ + caθcaaa) + (3a− 1) caθcaa] (ϕ′h − ϕ′l) < 0, and so, since ϕ′l > 0,

it is sufficient that the term in square brackets is weakly negative, or, equivalently, (15). �

A.5 Proofs for Section 7

Proof of Lemma 3 Lemma 12 in Appendix C provides conditions under which a solution to the

system (18)–(19) is a pair λ(a, θ, u0) and µ(a, θ, u0) that is twice continuously differentiable. And

since v̂(x, a, u0, θ) = ρ(λ+ µl(x|a)) for all x, it follows that v̂ is twice continuously differentiable

as well, and thus so is C(a, u0, θ) =
∫
ϕ(v̂(x, a, u0, θ))f(x|a)dx.

Recall that for each θ, α is defined by κ(α(θ), θ) + ζ(θ) = 0,where

κ(a, θ) =
(Ba − Ca)h

caθ
≤ 0, and ζ(θ) =

∫ θ

θ
Cu0h ≥ 0.

Consider any point (a, θ) with θ < θ, where κ(a, θ) + ζ(θ) = 0. Then, Ba − Ca > 0, and since

Ba − Ca is strictly decreasing in a given the assumption that Caa > 0, and since caaθ ≤ 0, it

follows that κa > 0. And since κ and ζ are continuous in θ, it follows that α is continuous in θ.
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Now, the fact that α is continuous implies that S(θ) = ū −
∫ θ
θ cθ(α(s), s)ds is continuously

differentiable. Hence, ζ is continuously differentiable, since the integrand Cu0h is continuous by

Lemma 3. But, κ is continuously differentiable as well, and so, as κa > 0, α is continuously

differentiable by the Implicit Function Theorem. Note finally that v̄ (·, θ) and v (·, θ) are trivially

well defined for all θ, since λ(α(·), S(·), ·) and µ(α(·), S(·), ·) are continuous. The last claim follows

since for all (x, θ), v(x, θ) = v̂(x, α(θ), S(θ, α), θ). �

A.6 Proofs for Section 8

Proof of Theorem 2 Using Lemma 8, it is enough to show that (30) holds for sufficiently large

ū. But, Baa and all terms involving c are finite by assumption, while
∫
vfaaa (which is equal to∫

vxFaa by integration by parts) and
∫
vxlFaa each have a finite limit from Chade and Swinkels

(2019), Lemma 3, and µ2
avarξ(l)

∫
ρ′f is finite by Lemma 4. Since each of λ, λ/µ, and λ/µa

diverges in ū from Lemma 4, we are done. �

Proof of Proposition 6 Note that
∫
ρ(λ+µl)f =

∫
(λ+µl)f = λ, and hence, from the participation

constraint, λ = u0 +c(a, θ). Similarly, letting Î(a) = 1/
∫
l2f be the reciprocal of the Fisher Infor-

mation that the output carries about a, then
∫

(λ + µl)fa = µ/Î(a), and hence µ = ca(a, θ)Î(a).

From this,

C(a, u0, θ) =
1

2

(
(u0 + c(a, θ))2 + c2

a(a, θ)Î
)

=
1

2
(λ2 + µca). (33)

This will allow us to apply Lemma 7 directly. In particular, Ca = λca+ 1
2µaca+ 1

2µcaa, and hence

Caa = c2
a + λcaa +

1

2
µaaca + µacaa +

1

2
µcaaa.

Substituting this into (26), rearranging and using µ = caÎ, sufficient for IMC is

ū ≥ −c− ca

(
Î
caaθ
caθ
− ca
caa
− 1

2

µaa
caa
− Î

2

caaa
caa

)
.

Now, since µ = caÎ, we have µa = caaÎ+caÎa, and µaa = caaaÎ+2caaÎa+caÎaa and so, substituting

and rearranging gives

ū ≥ −c+ ca

(
Î

(
caaa
caa
− caaθ

caθ

)
+ Îa +

(
1 +

Îaa
2

)
ca
caa

)
≥ −c,

using that caa/caθ is decreasing in a for each θ, Îa ≥ 0 and Îaa ≥ −2.37 �

Proof of Example 4 Simplifying (27) and dividing by α, IMC holds in this case at any given θ if

37Substituting µaa into Caa and gathering terms shows that these conditions also imply Caa > 0.
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and only if

ζ(θ) ≡
∫ 1

θ
Cu0 +

1

α
(caθCu0 − Cau0cθ + Caθ)(1− θ) + Caa ≤ 0,

where, with some algebra, Caa = (1− θ)(S(1 + α) + (1− θ)(3α− 5α2)), and thus ζ(1) = 0. But,

ζ ′ = −Cu0 +

(
1

α
(caθCu0 − Cau0cθ + Caθ)

)
θ

(1− θ)− 1

α
(caθCu0 − Cau0cθ + Caθ) + (Caa)θ

which, evaluated at θ = 1 gives ζ ′ = −Cu0 − 1
α(caθCu0 − Cau0cθ + Caθ) + (Caa)θ. In this case

λ = u0 + c = u0 + (1− θ)a2/2, and µ = Îca = (1− θ)a2(1− a), and hence, using (29),

caθCu0 − Cau0cθ + Caθ = 2λcaθ + µacaθ + µcaaθ = −2aλ− aµa − µ

= −a
(
2u0 + (1− θ) a2

)
− (1− θ)

(
2a2 − 3a3

)
− (1− θ)a2(1− a)

= −2au0 − 3(1− θ)a2(1− a),

which, evaluated at θ = 1 is equal to −2αS. And,

(Caa)θ = −
(
S (1 + α) + (1− θ)

(
3α− 5α2

))
+ (1− θ)

(
S (1 + α) + (1− θ)

(
3α− 5α2

))
θ

,

which, evaluated at θ = 1 is −S(1 + α).38 Finally, at θ = 1, Cu0 = λ = S. We thus have that at

θ = 1, ζ ′ = −S − 1
α(−2αS) − S(1 + α) = −Sα < 0. Thus, since ζ(1) = 0, ζ is strictly positive

near 1, violating IMC. �

A.7 Proofs for Section 9

Proof of Theorem 3 By IMC, vh−vl is increasing in θ. Let θ∗ be such that vh−vl ≥ u(ω)−u(ω−`)
if and only if θ ≥ θ∗. Fix an optimal menu, and assume some type θ is receiving strictly negative

insurance, i.e., vh(θ) > u(ω) > u(ω − `) > vl(θ). By IMC, insurance is strictly negative on all

higher types as well. But then, since the agent is strictly risk averse, the principal is strictly losing

money on all such types, since

(1− α(θ))u(ω − `) + α(θ)u(ω)− c(α(θ), θ) ≤ Ū(θ) ≤ (1− α(θ))vl(θ) + α(θ)vh(θ)− c(α(θ), θ),

and so since vh(θ) > u(ω) > u(ω − `) > vl(θ),

(1− α(θ))ϕ(u(ω − `)) + α(θ)ϕ(u(ω)) < (1− α(θ))ϕ(vl(θ)) + α(θ)ϕ(vh(θ)),

38Since Caa is 0 at θ = 1 from above, and since (Caa)θ < 0 at θ = 1, it follows that Caa > 0 for θ near 1.
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and hence

B(α(θ)) = ω − (1− α(θ))` < (1− α(θ))ϕ(vl(θ)) + α(θ)ϕ(vh(θ)) = C(α(θ), S(θ), θ).

Consider the mechanism in which all types above θ∗ are offered zero insurance at a zero

premium. That is, α = αNI , and S = Ū . For types below θ∗, keep α at its original level, but raise

t so as to reduce S by the constant amount S(θ∗)− Ū(θ∗). This menu is strictly more profitable,

since a set of unprofitable types are now zero profit, while remaining types take the same action

but at a higher premium. Since α is unchanged, IMC continues to hold on [θ, θ∗], while IMC

holds on [θ∗, θ̄] since ca(αNI(·), ·) is constant and equal to u(ω)− u(ω − `) on that range. Hence

incentive compatibility is satisfied. To see that the participation constraints hold, note that each

θ < θ∗ gets strictly positive insurance and so takes an action α(θ) < αNI(θ). Thus,

S′(θ) = −cθ(α(θ), θ) < −cθ(αNI(θ), θ) = Ū ′(θ),

since cθa < 0. But then, since now S(θ∗) = Ū(θ∗), we have that S(θ) > Ū(θ) for all θ < θ∗.

To see that θ∗ > θ, let ∆0 = u(ω) − u(ω − `), and define α(∆) by ca(α(∆), θ) = ∆, so that

α′ = 1/caa. Now, define vl(∆) by

vl(∆) + α(∆)∆− c(α(∆), θ) = Ū(θ), (34)

so that θ is indifferent between the policy (vl(∆), vl(∆) + ∆) and the outside option. The profit

to the principal from θ accepting is

Π̂ = ω − (1− α(∆))`− (1− α(∆))ϕ(vl(∆))− α(∆)ϕ(vl(∆) + ∆).

From (34), v′l = −α′∆−α+(ca/caa) = −α, where the second equality comes from α′ = 1/caa and

ca = ∆. Thus, with a little manipulation, Π̂′ = α′(`− (ϕh − ϕl))− (1− α)α(ϕ′h − ϕ′l), where the

first term reflects that as ∆ increases, coverage is paid out less often, and the second that as ∆

increases, the agent is bearing more risk. But then, since at ∆0, coverage is zero, Π̂′(∆0) < 0, and

hence, since Π̂(∆0) = 0, the policy (vl(∆), vl(∆) + ∆) is strictly profitable for ∆ near ∆0. Thus,

(vl(∆) + ε, vl(∆) + ∆ + ε) is accepted by an interval of types near θ and is strictly profitable on

any type that accepts it (since types above θ pay the same premium but are less likely to incur

losses). It follows that the principal gives a positive measure of agents strictly positive insurance

at any optimal menu, and so θ∗ > θ.

To see upward distortion, note that the rhs of (`−Ca)h = caθ
∫ θ
θ Cu0h is negative, and strictly

so for θ > θ. Hence, since at the constrained optimum, `− Ca = 0, any solution to the screening

problem must involve a strictly higher effort. Insurance must thus be less than full, since by the

incentive constraint, vh − vl = ca > 0. �
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A.8 Proofs for Section 10

Proof of Theorem 4 We proceed in several steps.

Step 1. Since S(θ) ≥ u, (10) implies that S(θ) ≥ u for all θ, and thus participation holds.

Step 2. Recall from Lemma 1 that conditional on being on L, the agent strictly prefers to

announce his true type. It thus suffices to show that any deviation to (θA, â) for θT , with â 6= α(θA)

is dominated by a deviation such that the action and the report are on L. We will show that

this holds for any deviation that is above L, i.e., with â > α(θA). A symmetric argument handles

deviations below L.

Step 3. We will show that fixing â, and for any θ̃ that the agent is contemplating announcing with

â > α(θ̃), the agent is better off by modifying his deviation so as to slightly raise θ from θ̃. To do

so, consider first the case where v is differentiable in θ at θ̃. Notice that
∫
vθ(x, θ̃)f(x|α(θ̃))dx = 0

by the first-order condition (11), and vθ has sign pattern −/+ by hypothesis. Hence∫
vθ(x, θ̃)f(x|â)dx =

∫
vθ(x, θ̃)f(x|α(θ̃))

f(x|â)

f(x|α(θ̃))
dx ≥ 0,

where we have used MLRP, â > α(θ̃), and Beesack’s inequality. Thus, the agent’s expected utility

is increasing in θ at (θ̃, â).

Consider now a jump point at θ̃ with endpoints a and ā, and where â ≥ a. It is enough to

show that ∫ (
v(x, θ̃)− v(x, θ̃)

)
f(x|a)dx ≥ 0, (35)

for then, since v̄(·, θ̃)− v(·, θ̃) has sign pattern −/+ and since as before f(·|â)/f(·|a) is increasing

in x, we have
∫ (

v(x, θ̃)− v(x, θ̃)
)
f(x|a) (f(x|â)/f(x|a)) dx ≥ 0.Thus, the agent is again better

off to raise the report of his type. To show (35), note that∫
v(x, θ̃)f(x|a)dx− c(a, θ̃) = S(θ̃) =

∫
v(x, θ̃)f(x|a)dx− c(a, θ̃) ≥

∫
v(x, θ̃)f(x|a)dx− c(a, θ̃),

where the first two equalities use (24), and the inequality uses (24) and FOP. Comparing the

outer terms and cancelling c(a, θ̃) gives (35).

Step 4. Suppose that â > α(θ̄). We will show that the agent is better off with a deviation to

(θ̄, α(θ̄)). To see this, notice that the previous step shows that∫
v(x, θ̄)f(x|â)dx ≥

∫
v(x, θA)f(x|â)dx,
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so the agent prefers deviation (θ̄, â) to (θA, â). By FOP and c submodular we obtain∫
v(x, θ̄)f(x|â)dx−

∫
v(x, θ̄)f(x|α(θ̄))dx ≤ c(â, θ̄)− c(α(θ̄), θ̄)

≤ c(â, θT )− c(α(θ̄), θT ),

which rearranges to∫
v(x, θ̄)f(x|α(θ̄))dx− c(α(θ̄), θT ) ≥

∫
v(x, θ̄)f(x|â)dx− c(â, θT ),

and thus (θ̄, α(θ̄)) is an even better deviation for the agent. Deviations with â < α(θ) are similarly

ruled out and we will hence restrict attention to deviations with â ∈ [α(θ), α(θ̄)].

Step 5. If there is a θ̃ such that α(θ̃) = â, then by Step 3, the agent is better off with deviation

(θ̃, α(θ̃)) ∈ L. Suppose instead that for some θJ there is a jump at θJ containing â, i.e., a ≤ â ≤ a.

Assume first that θJ > θT . Then, by Step 3,
∫
v(x, θT )f(x|â)dx ≥

∫
v(x, θA)f(x|â)dx, and so

type θT prefers the deviation (θT , â) to (θA, â). But, by FOP, (θT , α (θT )) is better still. So,

assume θJ ≤ θT . Define Ŝ1 =
∫
v(x, θA)f(x|â)dx − c(â, θT ), Ŝ2 =

∫
v(x)f(x|â)dx − c(â, θT ),

Ŝ3 =
∫
v̄(x)f(x|ā)dx − c(ā, θT ), and Ŝ4 = S(θT ). These are the expected utilities for type θT at

the points qi, i = 1,2,3,4, in Figure 3, where q2 reflects a limit from the left, and q3 from the right.

By Lemma 1 and (24), we have Ŝ4 ≥ Ŝ3, while by Step 3, Ŝ2 ≥ Ŝ1. It remains only to show

that Ŝ3 ≥ Ŝ2. Note that∫
v̄(x)f(x|ā)dx− c(ā, θJ) = S(θJ) =

∫
v(x)f(x|a)dx− c(a, θJ) ≥

∫
v(x)f(x|â)dx− c(â, θJ)

where the two equalities follow from (24) and the inequality by (24) and by FOP. But then, since

θT ≥ θJ and since c is submodular,

Ŝ3 =

∫
v̄(x)f(x|ā)dx− c(ā, θT ) ≥

∫
v(x)f(x|â)dx− c(â, θT ) = Ŝ2,

and we are done. Thus, the menu (α, v) is incentive compatible. �

Proof of Theorem 5 We will show that vθ has sign pattern −/+. It follows by Theorem 4, and by

the fact that a solution to the decoupling program satisfies BFC and FOP by construction, that

the decoupling menu is feasible and hence, as the solution to a relaxed program, optimal.

We can assume α′ ≤ −caθ/caa. Note that if at any given point α′ ≥ −caθ/caa, then it is

automatic that vθ has sign pattern −/+. This follows as in the discussion at the end of Section 5,

since by construction,
∫
vθf = 0 and hence, if vθ is +/−, then by Beesack’s inequality,

∫
vθfa ≤ 0,

a contradiction. So, in what follows, we can assume that α′ ≤ −caθ/caa.
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Figure 3: SCC . Under SCC, a deviation by θT to q1 is dominated by one to q2. But that deviation
in turn is dominated by a deviation to q3 and, since q3 is on locus, it is dominated by telling the
truth and taking the recommended action at point q4.

(Ca)θ ≥ 0 in any solution to the screening problem. Recall that (Ba − Ca) = (−caθ/h)
∫ θ̄
θ Cu0h

is an identity, and so, since Baa = 0, we have

(−Ca)θ =

(
−caθ
h

)
θ

∫ θ̄

θ
Cu0h−

−caθ
h

Cu0h ≤ 0, (36)

Note that (
−caθ
h

)
θ

=
s

(
log
−caθ
h

)
θ

=
−caθθ
−caθ

− h′

h
+ α′

−caaθ
−caθ

≤ −caθθ
−caθ

− h′

h
− caaθ
caa

=

(
log
−caθ
hcaa

)
θ

≤ 0,

where the first inequality follows since caaθ ≤ 0, and the second since caθ/ (hcaa) is increasing.

From (36), it follows that (Ca)θ ≥ 0. We will show that if vθ has sign pattern +/− (strictly) then

in fact (Ca)θ < 0, a contradiction.

Re-expressing π. Since lx (x|a′) /lx (x|a) is independent of x, we can fix some reference action

â, let l̂ = l (·|â), and express all relevant contracts as 1/u′ (π (θ, x)) = m (θ)+s (θ) l̂ (x) > 0, where
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s (θ) > 0, and where the condition that vθ is +/− is equivalent to sθ < 0.39

Setting up the contradiction. From the Envelope Theorem, Ca =
∫
πfa +µ

(
caa −

∫
vfaa

)
.

We will show that under the assumption that vθ is +/−, each of
∫
πfa, µ, and caa −

∫
vfaa

decreases with θ, with
∫
πfa decreasing strictly. Since caa −

∫
vfaa ≥ 0 (as caa ≥ 0 and since

Faa ≥ 0, and hence
∫
vfaa ≤ 0), it would then follow that (Ca)θ < 0, contradicting that vθ is +/−

and completing the proof.

µ is decreasing. Since s (θ) l̂x (x) = µ (θ) lx (x|α (θ)) for all θ, we have

sθ (θ) l̂x (x) = µθ (θ) lx (x|α (θ)) + µ (θ)α′ (θ) lxa (x|α (θ)) .

By the premise, sθ < 0, and thus sθ (θ) l̂x (x) < 0. The second term on the rhs is positive by the

assumption that lax ≥ 0 and α′ > 0. Hence, µθ < 0.∫
πfa is strictly decreasing. Note that

(∫
πfa
)
θ

=
∫
πθfa+α′

∫
πfaa, where the second term

is negative since α′ > 0 and since
∫
πfaa =

∫
πx (−Faa) ≥ 0 using that πx > 0, and Faa ≥ 0.

It is thus enough to show that
∫
πθfa < 0. To see this, recall that

∫
vθf = 0. Thus, by

the premise that vθ is +/− (strictly), and since 1/u′ is strictly increasing, we have by Beesack’s

inequality that
∫
πθf =

∫
(1/u′) vθf < 0.But, since πx = ψ′(m + sl̂)sl̂x, we have πxθ = ψ′′(m +

sl̂)sl̂x(mθ + sθ l̂) + ψ′(m + sl̂)sθ l̂x. By assumption, ψ′′ ≥ 0. It follows that πxθ < 0 whenever

πθ =s mθ + sθ l̂ ≤ 0. Let m̂ be such that
∫

(πθ + m̂) f = 0, where since
∫
πθf < 0, we have

m̂ > 0. Since πxθ < 0 whenever πθ ≤ 0, it follows that πθ + m̂ single-crosses 0 from above

(and does so strictly). Hence, since l is strictly increasing in x, Beesack’s inequality implies that∫
πθfa =

∫
(πθ + m̂) fa =

∫
(πθ + m̂) lf < 0, and it follows that

∫
πfa strictly decreases in θ.

Analyzing caa −
∫
vfaa. Since (caa)θ = caaaα

′ + caaθ, and using caaθ ≤ 0, if caaa ≤ 0, then

(caa)θ ≤ 0 since α′ ≥ 0, while if caaa > 0, then, since α′ ≤ −caθ/caa,

caaaα
′ + caaθ ≤ caaa

−caθ
caa

+ caaθ =s

(
caa
−caθ

)
a

≤ 0.

Thus, it suffices that
(∫
vfaa

)
θ

=
∫
vθfaa + α′

∫
vfaaa ≥ 0. But, α′

∫
vfaaa = −α′

∫
vxFaaa ≥ 0,

since α′ ≥ 0, vx > 0, and Faaa ≤ 0. It thus suffices that
∫
vθfaa ≥ 0, or equivalently, that∫

vθxFaa ≤ 0. We would be done if we could show that vθx was everywhere negative, since Faa is

everywhere positive.

vθx is negative. Since vθ = (ρ′) (mθ + sθ l̂), we have vθx = zl̂x, where

z = ρ′′s(mθ + sθ l̂) + ρ′sθ, (37)

39To see this, note that vθ = (ρ′) (mθ + sθ l̂) and vθx = (ρ′′) (mθ + sθ l̂)sl̂x + ρ′sθ l̂x. Hence, at any point where
vθ = 0, we have vθx = ρ′sθ l̂x, which is strictly negative if and only if sθ > 0.
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and it is enough to show that z is everywhere negative. Let vθ (x̂) = 0. To the left of x̂,

vθ =s mθ + sθ l̂ ≥ 0, and so, since sθ < 0 and ρ′′ ≤ 0, we have z < 0. It is thus enough to show

that z does not cross zero from below anywhere to the right of x̂.

Now, zx =
(
ρ′′′s2(mθ + sθ l̂) + 2ρ′′ssθ

)
l̂x, and, since ρ′sθ < 0, where z = 0, we have by (37)

that ρ′′ < 0, and so mθ + sθ l̂ = −(ρ′/ρ′′)(sθ/s). Inserting this expression into zx yields

zx =

(
ρ′′′s2

(
− ρ
′

ρ′′
sθ
s

)
+ 2ρ′′ssθ

)
l̂x =

s

ρ′′′

ρ′′
− 2

ρ′′

ρ′
=
s

−ρ′′

(ρ′)2

(
ρ′′′

ρ′′
− 2

ρ′′

ρ′

)
=

(
1

ρ′

)′′
< 0,

where the first equality of sign uses that sθ < 0 and the second that ρ′′ < 0. Thus, any crossing

point of z is strictly from above, and we are done. �

A.9 Proofs For Section 11

Proof of Proposition 7 If we replace θ in (16) by θ∗, we have the relaxed problem subject to

exclusion. By way of contradiction, assume this problem admits a strictly better solution α̃ than

α̂(·, θ∗)|[θ∗,θ̄]. Then, paste α̃ and α̂(·, θ∗)|[θ,θ∗] together, holding fixed S(θ∗) = ū, to obtain a strictly

better feasible solution to (16). But, the optimal solution to the relaxed problem is unique by

Appendix B, and we have a contradiction.

Now, let Z (θc, θ
∗) =

∫ θ̄
θc

(B (α̂ (θ, θ∗)) , θ) − C(α̂ (θ, θ∗) , Ŝ(θ, θc, θ
∗), θ)h (θ) dθ be the profit to

the principal of excluding types below θc and choosing action profile α̂ (·, θ∗) for types above

θc. But, by the first paragraph, Z (θc, ·) is optimized at θ∗ = θc, and thus, since α̂ (θ, θ∗) is

differentiable in θ∗, Zθ∗ (θc, θc) = 0. The first order condition on the choice of the cutoff θc for

the principal is thus 0 = d
dθc

(Z (θc, θc)) = Zθc (θc, θc) + Zθ∗ (θc, θc) = Zθc (θc, θc) .

But, note that

Zθc (θc, θc) = − (B (α̂ (θc, θc)) , θc)− C
(
α̂ (θc, θc) , Ŝ(θc, θc, θc), θc

)
h (θc) (38)

− cθ (α̂ (θc, θc) , θc)

∫ θ̄

θc

Cu0(α̂ (θ, θc) , Ŝ(θ, θc, θc), θ)h (θ) dθ,

using that for all θ > θc, Ŝθc(θ, θc, θc) = −cθ (α̂ (θc, θc) , θc). Rearranging gives the necessity result.

It remains to show that if cθθ ≥ 0, then, the function Z (θc, θc) is concave in θc, and hence,

a solution to the first order condition characterizes the optimal cutoff. Recall that for all θc,
d
dθc

(Z (θc, θc)) = Zθc (θc, θc), and hence d2

dθ2
c

(Z (θc, θc)) = d
dθc

(Zθc (θc, θc)), which by (38), is equal

to

−

(
(Ba − Ca)h− cθa

∫ θ̄

θc

Cu0

)
d

dθc
(α̂ (θc, θc)) + Cθh− cθθ

∫ θ̄

θc

Cu0 − cθ
d

dθc

∫ θ̄

θc

Cu0 .

The first term is zero using the FOC with respect to the action at θc. The terms Cθh and
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−cθθ
∫ θ̄
θc
Cu0 are each negative by assumption. Since −cθ > 0, it remains to show that

d

dθc

∫ θ̄

θc

Cu0(α̂ (τ, θc) , Ŝ(τ, θc, θc), τ)h (τ) dτ ≤ 0,

where the Leibniz term is strictly negative since Cu0 > 0. It would thus suffice to show that for

each θ ≥ θc,

k (θ) =

∫ θ̄

θ

d

dθc
Cu0(α̂ (τ, θc) , Ŝ(τ, θc, θc), τ)h (τ) dτ ≤ 0.

Note that k
(
θ̄
)

= 0. Hence, it is enough to show that for any θ̂ ≥ θc, k′(θ̂) ≥ 0. But,

k′(θ̂) =s −
d

dθc
Cu0(α̂(θ̂, θc), Ŝ(θ̂, θc, θc), θ̂),

and so, evaluating the rhs, we desire to show that

Cu0a(α̂(θ̂, θc), Ŝ(θ̂, θc, θc), θ̂)α̂θc(θ̂, θc) + Cu0u0(α̂(θ̂, θc), Ŝ(θ̂, θc, θc), θ̂)
d

dθc
Ŝ(θ̂, θc, θc) ≤ 0. (39)

Now, Cu0a > 0 by assumption. Consider d
dθc
Ŝ(θ̂, θc, θc). Fix any θH > θL. Then, we claim that

for all θ, Ŝ(θ, θH , θH) ≤ Ŝ(θ, θL, θL). To see this, note first that ū = Ŝ(θH , θH , θH) < Ŝ(θH , θL, θL).

Assume that at some point θ̃, Ŝ(θ̃, θH , θH) = Ŝ(θ̃, θL, θL). Then, as in the first paragraph of

the proof, the optimal solutions α̂ (·, θH) and α̂ (·, θL) coincide for all θ > θ̃, and hence so do

Ŝ(·, θH , θH) and Ŝ(·, θL, θL). It follows that d
dθc
Ŝ(θ̂, θc, θc) ≤ 0,

Now, from the optimality of α̂(·, θc), we have that for all θc,

Ba(α̂(θ̂, θc))−Ca(α̂(θ̂, θc), Ŝ(θ̂, θc, θc), θ̂) = − 1

h(θ̂)
caθ(α̂(θ̂, θc), θ̂)

∫ θ̄

θ̂
Cu0(α̂ (τ, θc) , Ŝ(τ, θc, θc), τ)h (τ) dτ,

and hence, differentiating by θc,(
Baa − Caa +

1

h
caaθ

∫ θ̄

θ̂
Cu0

)
α̂θc(θ̂, θc) = Cau0

d

dθc
Ŝ(θ̂, θc, θc)

where the omitted terms can be ignored since k(θ̂) = 0.

We thus have that

α̂θc(θ̂, θc) =
Cau0

Baa − Caa + 1
hcaaθ

∫ θ̄
θ̂ Cu0

d

dθc
Ŝ(θ̂, θc, θc) ≤

Cau0

−Caa
d

dθc
Ŝ(θ̂, θc, θc)

where we use that Baa ≤ 0 and caaθ ≤ 0, and that (d/dθc)Ŝ(θ̂, θc, θc) ≤ 0. The lhs of (39) is thus

at most
(
Cu0u0Caa − C2

u0a

)
(1/Caa)(d/dθc)Ŝ(θ̂, θc, θc) ≤ 0,where the inequality follows since the
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bracketed term is positive by the convexity of C in a and u0. �

Proof of Example 5 Since log f = log r+θ log g−log
∫
rgθ, we have fθ/f = log g−

∫
rgθ(log g)

∫
rgθ,

and so (fθ/f)x = gx/g > 0. Similarly, fa/f = θga/g −
∫
θrgθ−1ga/

∫
rgθ, and so (fa/f)x =

θ(ga/g)x > 0. It remains to show that Faθ ≤ 0. But,

fa = fθ

(
ga
g
−
∫
rgθ gag∫
rgθ

)
= fθ

(
ga
g
−
∫
ga
g
f

)
= fθ

(
ga
g
− γ
)

,

where γ =
∫

(ga/g)f . Note that γθ =
∫

(ga/g)fθ =
∫
x(ga/g)x(−Fθ) > 0, using that g is lsm in a

and x, and that since fθ/f is increasing, −Fθ > 0 on [x, x̄]. Thus,

faθ =

((
fθ
f
θ + 1

)(
ga
g
− γ
)
− θγθ

)
f .

To show that Faθ ≤ 0, it is enough to show that faθ(·|a, θ) single-crosses zero from below, using

that Faθ(x|a, θ) =
∫ x
x faθds, and that Faθ(x|a, θ) = Faθ(x̄|a, θ) = 0. But, since γθ > 0, and since

by assumption (fθ/f)θ+1 ≥ 0, it follows that at any point where faθ(s|a, θ) = 0, both (fθ/f)θ+1

and (ga/g)− γ are positive and increasing in x, and the result follows. �

For contract v̂, action a, and type θ, define U(v̂, a, θ) =
∫
v̂(x)f(x|a, θ)dx− c(a, θ). Note that

Ua =
∫
v̂fa− ca =

∫
v̂x(−Fa)− ca, and hence Uaθ =

∫
v̂x(−Faθ)− caθ ≥ 0 since Faθ ≤ 0, and since

c is submodular.

Lemma 10 Let (α, v) satisfy the FOCs, let α be increasing, and let v satisfy SCC, where for each

θ, v(·, θ) is increasing and bounded. Let Ŝ(θT , θ̂) = U(v(·, θ̂), α(θ̂), θT ) be the value to type θT of

imitating θ̂’s announcement and action. Then, Ŝ(θT , ·) is single-peaked at θT for all θT .

Proof Since α is increasing, it is differentiable almost everywhere, and jumps at a countable set of

points. To show single-peakedness, it is enough to show that for θ̂ < θT , where α is differentiable,

Ŝ is also differentiable, with Ŝθ̂(θT , θ̂) ≥ 0, and that at jump points of α, Ŝ(θT , ·) also jumps up.

The zero measure set of points where α is continuous but not differentiable is irrelevant, and the

case θ̂ > θT is symmetric.

First, consider any point θ̂ at which α is differentiable. By regularity, vθ(x, θ̂) is defined for

almost all x. Thus,

Ŝθ̂(θT , θ̂) =

∫
vθ(x, θ̂)f(x|α(θ̂), θT )dx+ α′(θ̂)

(∫
v(x, θ̂)fa(x|α(θ̂), θT )dx− ca(α(θ̂), θT )

)
.

It suffices to show that each of the two terms on the rhs is positive evaluated at θ̂ = θT .

By FOC,
∫
vθ(x, θ̂)f(x|α(θ̂), θ̂)dx = 0, and so, since f(·|α(θ̂), θT )/f(·|α(θ̂), θ̂) is increasing, the

53



first term is positive using Beesack’s Inequality. The second term is positive at θ̂ = θT , using that

α′(θ) ≥ 0, that Ua(θ̂, α(θ̂), θ̂) = 0, and that Uaθ ≥ 0.

Consider a point θ̂ at which α jumps, with a, ā, v, and v̄ defined as usual. Then, for any θ̃,

lim
θ↑θ̂

U(v(·, θ), α(θ), θ̃) = U(v, a, θ̃) and lim
θ↑θ̂

Ua(v(·, θ), α(θ), θ̃) = Ua(v, a, θ̃),

and similarly for ā, v̄ and θ ↓ θ̂. We wish to establish that

0 ≤ lim
θ↓θ̂

Ŝ(θT , θ)− lim
θ↑θ̂

Ŝ(θT , θ) = U(v̄, ā, θT )− U(v, a, θT ). (40)

But, note that S(θ̂) = limθ↑θ̂ Ŝ(θ̂, θ) = limθ↑θ̂ U(v(·, θ), α(θ), θ̂) = U(v, a, θ̂), and similarly, S(θ̂) =

U(v̄, ā, θ̂), and thus U(v̄, ā, θ̂) = U(v, a, θ̂). Further, since Ua(v(·, θ), α(θ), θ) = 0 for all θ by FOC,

Ua(v, a, θ̂) = 0, and so by FOP, U(v, a, θ̂) ≥ U(v, ā, θ̂), and hence, combining these two equations,

U(v̄, ā, θ̂) ≥ U(v, ā, θ̂). Similarly, Ua(v̄, ā, θ̂) = 0, and so U(v̄, a, θ̂) ≤ U(v, a, θ̂). There is thus

ã ∈ [a, ā] such that U(v̄, ã, θ̂) = U(v, ã, θ̂).

Now, for any θ, U(v̄, ā, θ)− U(v, a, θ) is equal to

(U(v̄, ā, θ)− U(v̄, ã, θ)) + (U(v̄, ã, θ)− U(v, ã, θ)) + (U(v, ã, θ)− U(v, a, θ)) .

Evaluated at θ = θ̂, this difference is 0. We will show that each of the three bracketed terms

is larger evaluated at θ = θT than at θ = θ̂, establishing (40). But, Uaθ(v̂, a, θ) ≥ 0, and so

the first bracketed term, which is equal to
∫ ā
ã Ua(v̄, a, θ)da, is increasing in θ, and similarly for

the third term. The middle term is U(v̄, ã, θ) − U(v, ã, θ) =
∫

(v̄(x) − v(x))f(x|ã, θ)dx. By

definition of ã, this is zero evaluated at θ = θ̂. But then, since f(·|ã, θT )/f(·|ã,θ̂) is increasing,

U(v̄, ã, θT )− U(v, ã, θT ) ≥ 0 by Beesack’s Inequality and we are done. �

Proof of Proposition 8 Consider a type θT , and deviation (â, θ̂). We focus on the case where

θ̂ ≤ θT , and then appeal to symmetry. Given Lemma 10, the key, as before, is to show that there

is some “on locus” deviation (α(θ), θ) that θT prefers to (â,θ̂).

Assume first that â ≤ α(θ̂). Then, since Ua(v(·, θ̂), α(θ̂), θ̂) = 0, it follows from FOP that for

any a ∈ [â, α(θ̂)], Ua(v(·, θ̂), a, θ̂) ≥ 0, and so, since Uaθ ≥ 0, the deviation (â, θ̂) is dominated for

θT by the on-locus deviation (α(θ̂), θ̂).

Assume next that â > α(θ̂). Informally, we will show that, holding fixed â, type θT is better

off to increase his announced type until either he reaches the locus or θT . In the latter case, using

FOC and FOP, (α(θT ), θT ) is better still.

Consider in particular, any θ̃ < θT at which â ≥ α(θ̃). Assume first that α is differentiable at

θ̃. Then, by regularity, vθ(·, θ) is well-defined and from FOC,
∫
vθ(x, θ̃)f(x|α(θ̃), θ̃)dx = 0. But
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then, since vθ is −/+ by assumption, and using Beesack’s Inequality, it is enough that

f(x|â, θ)
f(x|α(θ̃), θ̃)

=
f(x|â, θ)

f(x|α(θ̃), θ)

f(x|α(θ̃), θ)

f(x|α(θ̃), θ̃)
(41)

increases in x. Since each of fa/f and fθ/f are increasing in x, it follows that f(x|â, θ)/f(x|α(θ̃), θ̃)

is the product of positive increasing functions, and so is increasing.

Consider a jump point θ̃, and, as in the proof of Lemma 10, define the corresponding effort

levels a and ā and contracts v and v̄. Assume first that ā ≤ â. Then, as in the proof of Lemma 10,∫
(v̄(x)− v(x))f(x|ã, θ̃)dx = 0 for some ã ∈ [a, ā], and so, as (41),

∫
(v̄(x)− v(x))f(x|â, θT )dx ≥ 0.

Finally, consider the case that â ∈ [a, ā]. Then, for all θ < θ̃, the reasoning above shows that

the agent is better to locally increase his announced type, and thus, U(v, â, θT ) ≥ U(v(·, θ̂), â, θT ),

and so, to get “on-locus” it would be enough to establish that U (v̄, ā, θT ) ≥ U(v, â, θT ).

Note in particular

U(v̄, ā, θ̃) = S(θ̃) = U(v, a, θ̃) ≥ U(v, â, θ̃), (42)

where the inequality follows FOC, FOP, and convexity of c in a. Consider first the case that

ã ≥ â. Then, for each θ, U(v̄, ā, θ)− U(v, â, θ) equals∫ ã

â
Ua(v, a, θ)da+

∫
(v̄(x)− v(x))f(x|ã, θ)dx+

∫ ā

ã
Ua(v̄, a, θ)da,

which is increasing in θ as in the proof of Lemma 10. Thus,

U(v̄, ā, θT )− U(v, â, θT ) ≥ U(v̄, ā, θ̃)− U(v, â, θ̃) ≥ 0,

where the last inequality is from (42).

Consider next the case that ã < â. Then, for all θ ≥ θ̃,

U(v̄, ā, θ)− U(v, â, θ) =

∫
(v̄(x)− v(x))f(x|â, θ)dx+

∫ ā

â
Ua(v̄, a, θ)da.

The first term on the rhs is positive as before since â > ã and θ ≥ θ̃. And, by the FOP and

convexity of c in a, Ua(v̄, a, θ̃) ≥ 0, so, since Uaθ ≥ 0, Ua(v̄, a, θT ) ≥ 0. Hence, in either case, type

θ prefers (v̄, ā) to (v, â), and we are done. �

Proof of Proposition 9 A randomized mechanism is a map σ that for each θ generates a distribution

σ (·|θ) over pairs consisting of a compensation scheme ṽ and recommended action a. There is an

obvious mapping between deterministic mechanisms and degenerate random mechanisms.
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For given ṽ and a, let s̃(ṽ, a, θ) =
∫
ṽ(x)f(x|a)dx− c(a, θ). The principal’s problem is

max
σ

∫ (∫ (
B(a)−

∫
ϕ(ṽ)f(x|a)dx

)
dσ(ṽ, a|θ)

)
h(θ)dθ,

subject to incentive compatibility and participation, where incentive compatibility requires first

that

θ ∈ arg max
θA

(∫
max
a′

s̃(ṽ, a′, θ)dσ(ṽ, a|θA)

)
, (43)

so that the agent truthfully reports his type, and second that, with σ-probability one,

s̃(ṽ, a, θ) = max
a′

s̃(ṽ, a′, θ), (44)

so that the agent follows the recommended action. In turn, participation holds if∫
s̃ (ṽ, a, θ) dσ (ṽ, a|θ) ≥ ū.

Let VFR (FR for “full-random”) be the value of this program.

Fix any feasible mechanism σ. Then, with σ-probability one,∫
ϕ(ṽ(x))f(x|a)dx ≥ C(a, s̃(ṽ, a, θ), θ),

since the local incentive constraint is necessary for (44), and C is the minimized cost subject only

to the local incentive constraint. Further, let

%(θ, θA) =

∫
s̃(ṽ, a, θ)dσ(ṽ, a|θA) =

∫ (∫
ṽ(x)f(x|a)dx− c(a, θ)

)
dσ(ṽ, a|θA)

be the surplus to type θ of announcing θA and then taking the recommended action. Then, letting

S(θ) =
∫
s̃(ṽ, a, θ)dσ(ṽ, a|θ) be the surplus to type θ, S(θ) ≥ %(θ, θA), with equality at θA = θ.

Hence, a necessary condition for incentive compatibility is that

S′(θ) = %θ(θ, θ) =

∫
(−cθ(a, θ))dσ(ṽ, a|θ).

Thus, noting that each choice of σ generates a distribution µ on actions cross surplus, VFR is at

most VRR (RR for “relaxed-random”), the value of the program

max
µ

∫ (∫
(B(a)− C(a, s, θ)) dµ(a, s|θ)

)
h(θ)dθ

s.t.

∫
sdµ(a, s|θ) = ū+

∫ θ

θ

(∫
(−cθ(a, τ))dµ(a, s|τ)

)
dτ .
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Let VRD (RD for “relaxed-deterministic”) be the value of our original relaxed screening prob-

lem, in which menus are restricted to be deterministic. We claim VRD = VRR. To see this, let µ∗

be optimal in the relaxed random program. Let a∗(θ) =
∫
adµ∗(a, s|θ), S∗(θ) =

∫
sdµ∗(a, s|θ),

and S∗∗(θ) = ū+
∫ θ
θ (−cθ(a∗(τ), τ))dτ . Since −cθ is convex in a (recall caaθ ≤ 0), we have

S∗∗θ = −cθ(a∗(θ), θ) ≤
∫

(−cθ(a, θ))dµ∗(a, s|θ) = S∗θ ,

and so, since S∗∗(θ) = S∗(θ) = ū, we have S∗∗ ≤ S∗. But then, since B −C is strictly concave in

(a, u0), and decreasing in u0,

VRR =

∫ (∫
(B(a)− C(a, s, θ))dµ∗(a, s|θ)

)
h(θ)dθ

≤
∫

(B(a∗(θ))− C(a∗(θ), S∗(θ), θ))h(θ)dθ

≤
∫

(B(a∗(θ))− C(a∗(θ), S∗∗(θ), θ))h(θ)dθ

≤ VRD,

where the last inequality follows since by construction (a∗, S∗∗) is feasible in the relaxed deter-

ministic problem. So, VFR ≤ VRD, and thus if the solution to the relaxed deterministic program

is feasible, then it is in fact optimal even if randomization is allowed. �

Appendix B Existence in the Relaxed Pure Adverse Selection

Problem

To show existence, we will need the assumption, maintained for this section, that Ĉ(·, ·, θ) is

strictly convex for each θ. For the canonical setting without moral hazard, Ĉ(a, u0, θ) = ϕ(u0 +

c(a, θ)), where ϕ = u−1, and so this is immediate. The situation is more complicated in the

decoupling program where Ĉ = C comes from the cost minimization step of the pure moral

hazard problem. Although primitives for C convex in a are known (see Jewitt, Kadan, and

Swinkels (2008) and Chade and Swinkels (2019) (CS )), ensuring joint convexity in (a, u0) is

harder. For the square root utility case analyzed in Section 15, all the assumptions are easily

satisfied. Moreover, checking the convexity of a numerically generated C for any given set of

primitives is straightforward. Finally, we have the following result, showing convexity on the

relevant range as long as ū is large enough.

Lemma 11 Let F ∈ C4, let Assumptions 2-4 hold, and let a < ∞. Then for all ū sufficiently

large, C(·, ·, θ) is strictly convex for each θ and for all (a, u0) with u0 ≥ ū.

57



Proof From CS, Lemma 7,

Caa = λcaa + µ

(
caaa −

∫
vfaaa −

∫
vxlFaa

)
+

(∫
ρ′f

)(
µ2
avarξ(l)− µ2 varξ(la)

)
,

which is strictly positive for all u0 > ū when ū is sufficiently large (CS, Corollary 1), while from

CS, Lemma 5, Cau0 = λa = −µa
∫
lξ − µ

∫
laξ and Cu0u0 = λu0 =

∫
l2ξ/

(
varξ(l)

∫
ρ′f
)
> 0. It

remains only to show that for u0 sufficiently large, the determinant CaaCu0u0 − (Cau0)2 is strictly

positive. But, this has the same sign as

Caa
λ
− (Cau0)2

λCu0u0

= caa +
µ

λ

(
caaa −

∫
vfaaa −

∫
vxlFaa

)
+
µa
λ

(
µa

∫
ρ′f

)
varξ(l)−

µ

λ

(
µ

∫
ρ′f

)
varξ(la)

−

(
µa
λ

(
µa

∫
ρ′f

)(∫
lξ

)2

+ 2
µa
λ

(
µ

∫
ρ′f

)∫
lξ

∫
laξ +

µ

λ

(
µ

∫
ρ′f

)(∫
laξ

)2
)
varξ(l)∫

l2ξ
,

where each term other than the first consists of a ratio that by Lemma 4 goes to 0, along with

terms that remain bounded using Lemma 4 and the fact that ξ → f by CS, Lemma 4. �

We are now ready to prove our existence and uniqueness result.

Proposition 11 Let Ĉ be continuous, strictly convex in (a, u0) for each θ, and satisfy Ĉa(0, u0, θ) =

0 and lima→a Ĉa(a, u0, θ) = ∞ for all (u0, θ). Let u be in the interior of the range of u. Then

there is a solution to the relaxed pure adverse selection problem

max
α,S

∫ θ

θ

(
B(α(θ))− Ĉ(α (θ) , S(θ), θ))

)
h(θ)dθ

s.t. S(θ) = ū−
∫ θ

θ
cθ(α(τ), τ)dτ for almost all θ, (45)

This solution is unique.

Proof Recall from Footnote 12 that the Hamiltonian of the problem is H = (B− Ĉ)h−ηcθ, where

η ≤ 0 is the co-state variable. To see thatH is concave in (a, u0), note that joint concavity requires

(i) Haa ≤ 0, which follows from B concave in a, caaθ ≤ 0, and Ĉaa ≥ 0; (ii) Hu0u0 ≤ 0, which

follows since Ĉu0u0 ≥ 0; and (iii) HaaHu0u0 −H2
au0
≥ 0, which follows since ĈaaĈu0u0 − Ĉ2

au0
≥ 0.

Given the boundary conditions on Ĉa, the optimality conditions are ∂H/∂a = 0, η′(θ) =

−∂H/∂S, and η(θ) = 0, from which we obtain

Ba − Ĉa = −caθ
h

∫ θ̄

θ
Ĉu0h, (46)
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plus (45). The concavity of H ensures that (45)–(46) are also sufficient. As a result, we will focus

on them in our search for a solution (α, S) to the problem.

Define a∗(s, z, θ) as the solution to

Ba(a)− Ĉa(a, s, θ) = −caθ(a, θ)
h(θ)

z (47)

where a∗ exists from the boundary conditions on Ĉa, and is unique from the convexity of Ĉ and

−cθ in a and the concavity of B. We will then be done if we find a solution to the following

system of ordinary differential equations:[
S′(θ)

Z ′(θ)

]
=

[
gS(S(θ), Z(θ), θ)

gZ(S(θ), Z(θ), θ)

]
.

with boundary conditions S(θ) = u and Z(θ̄) = 0, where[
gS(S(θ), Z(θ), θ)

gZ(S(θ), Z(θ), θ)

]
=

[
−cθ(a∗(S(θ), Z(θ), θ), θ)

−Cu0(a∗(S(θ), Z(θ), θ), S(θ), θ)h(θ)

]
.

Indeed if we take α(θ) = a∗(S(θ), Z(θ), θ) then Z(θ) =
∫ θ̄
θ Cu0(α(t), S(t), t)h(t)dt. Hence, by

definition of a∗ and comparing (46) and (47), (α, S) satisfies the relevant conditions.

Define umax = ū+ (θ − θ) max(a,θ)∈[0,a]×[θ,θ](−cθ(a, θ)), and

zmax = (θ − θ) max
(a,θ)∈[0,a]×[u,umax]×[θ,θ]

Cu0(a, s, θ)h (θ) .

Choose δ > 0 such that u − δ remains in the domain of u, and let R = [u, umax] × [0, zmax] and

Rδ = [u − δ, umax + δ] × [−δ, zmax + δ]. Then a∗ is Lipschitz on Rδ × [θ, θ], and hence so are gS

and gZ .

Let ζ : R2 → [0, 1] be a Lipschitz function such that ζ(s, z) = 1 if (s, z) ∈ R and ζ(s, z) = 0

if (s, z) /∈ Rδ/2. In an abuse of notation, write ζgS for the function that is ζ(s, z)gS (s, z, θ) on

Rδ, and zero otherwise, and similarly for ζgZ . Then (ζgS , ζgZ) is Lipschitz on R2 × [θ, θ], and

so by standard results in the theory of differential equations (see, e.g., Theorems 2.3 and 2.6

in Khalil (1992)) there exist continuous functions Ŝ and Ẑ mapping R × [θ, θ] into R such that

Ŝ(u0, θ̄) = u0, Ẑ(u0, θ̄) = 0, and[
Ŝθ(u0, θ)

Ẑθ(u0, θ)

]
=

[ (
ζgS
)

(Ŝ(u0, θ), Ẑ(u0, θ), θ)(
ζgZ

)
(Ŝ(u0, θ), Ẑ(u0, θ), θ)

]
.

Note that Ŝ(umax, θ) ≥ u by the definition of gS and umax. Similarly, since Ŝθ ≥ 0, Ŝ(u, θ) ≤ u.
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Hence, by continuity, there exists u∗ ∈ [ū, umax] such that Ŝ(u∗, θ) = u. But then, since Ŝθ ≥ 0,

Ŝ (u∗, θ) ∈ [ū, umax] for all θ ∈ [θ, θ]. Similarly, since Ẑθ ≤ 0, and using the definition of zmax, we

have Ẑ(u∗, θ) ∈ [0, zmax] for all θ ∈ [θ, θ]. Thus, (Ŝ(u∗, θ), Ẑ(u∗, θ)) ∈ R for all θ ∈ [θ, θ], and so

since ζ = 1 on R, the pair (S(·), Z(·)) = (Ŝ(u∗, ·), Ẑ(u∗, ·)) satisfies the required conditions.

To see uniqueness, let
(
α1, S1

)
and

(
α2, S2

)
be optimal and differ on a positive measure set.

Consider α̂ =
(
α1 + α2

)
/2, and note that since caaθ ≤ 0, −cθ (α̂, θ) ≤

(
−cθ

(
α1, θ

)
− cθ

(
α2, θ

))
/2.

Hence, Ŝ = ū−
∫ θ
θ cθ (α̂ (τ) , τ) dτ ≤ (1/2)

(
S1 + S2

)
. But then, because B−C is strictly concave

in a and u0, and decreasing in u0, (α̂, Ŝ) is strictly superior, contradicting that either
(
α1, S1

)
or(

α2, S2
)

was optimal. �

Appendix C Existence and Differentiability in the Pure Moral

Hazard Problem

Let W be the domain of the utility function, an interval with infimum w and supremum w̄. Let

v = limw→w u(w), and let v̄ = limw→w̄ u(w). Let E be the set of (a, u0, θ) such that the relaxed

moral hazard problem in Section 3.3 admits a solution v̂ where v̂(x) > v and v̂(x̄) < v̄. If we

let τ = limw→w
1

u′(w) , and τ̄ = limw→w̄
1

u′(w) , then it is easy to show that v̂(x) > v if and only if

λ + µl(x|a) > τ for the associated Lagrange multipliers, and similarly, that v̂(x̄) < v̄ if and only

if λ+ µl(x̄|a) < τ̄ .

Lemma 12 The set E is open. The multipliers λ and µ are twice continuously differentiable

functions of (a, u0, θ) on E.

Proof Let

G(λ, µ, a, u0, θ) =

(
g1(λ, µ, a, u0, θ)

g2(λ, µ, a, u0, θ)

)
,

where

g1(λ, µ, a, u0, θ) =

∫
ρ(λ+ µl(x|a))f(x|a)dx− c(a, θ)− u0,

g2(λ, µ, a, u0, θ) =
∂

∂a

∫
ρ(λ+ µl(x|a))f(x|a)dx− c(a, θ)− u0.

Let (a0, u0
0, θ

0) ∈ E , let λ0 and µ0 be the associated Lagrange multipliers, and let κ0 = (λ0, µ0, a0, u0
0, θ

0).

Then, G(κ0) = 0, and by definition of E , λ0 + µ0l(x|a0) > τ , and λ0 + µ0l(x̄|a0) < τ̄ . We need

to show that λ and µ are implicitly defined as C1 functions of (a, u0, θ) on a neighborhood of

(a0, u0
0, θ

0). Since λ+µl(x|a) and λ+µl(x̄|a) are continuous in (λ, µ, a), it would follow from this

that E is open. We proceed in several steps.

60



Step 1. We first show that g1λ exists at κ0, and is equal to
∫
ρ′(λ0 + µ0l(x|a0))f(x|a0)dx. To

show this, we must first show that it is valid to differentiate under the integral. This requires

that ρ(λ+ µl(x|a))f(x|a) be integrable. Since f is continuous on the compact interval [x, x̄], it is

bounded, and so it is enough to show that |ρ(λ+ µl(x|a))| is bounded. But,

ρ(λ+ µl(x|a)) ≤ ρ(λ0 + µ0l(x̄|a0)) <∞,

where we use that λ0 + µ0l(x̄|a0) < τ̄ by hypothesis, and similarly, ρ(λ + µl(x|a)) ≥ ρ(λ0 +

µ0l(x|a0)) > ∞, and we are done. Another requirement for passing the derivative through the

integral is that ρ′(λ0 + µ0l(x|a0))f(x|a0) is bounded above by an integrable function on some

neighborhood of (λ0, µ0, a0). To see this, choose δ and δ̄ such that τ < δ < λ0 + µ0l(x|a0) and

λ0 + µ0l(x̄|a0) < δ̄ < τ̄ . Then, since λ+ µl(x|a) and λ+ µl(x̄|a) are continuous in (λ, µ, a), there

is a neighborhood N of (λ0, µ0, a0) such that δ < ρ(λ+ µl(x|a)) < ρ(λ+ µl(x̄|a)) < δ̄ on N . But

then, for all x, and everywhere on N , ρ′(λ + µl(x|a)) ≤ maxσ∈[δ,δ̄] ρ
′(σ) < ∞, where the second

inequality follows since ρ is continuously differentiable (with ρ′(σ) = ((u′)3/ − u′′)(ψ(σ))) and

[δ, δ̄] is compact. By Corollary 5.9 in Bartle (1966) (and Billingsley (1995), problem 16.5), we can

pass the derivative through the integral and this provides an expression for g1λ.

Step 2. g1λ =
∫
ρ′(λ+µl(x|a))f(x|a)dx is itself continuous in (λ, µ, a) at (λ0, µ0, a0). This follows

since λ + µl(x|a) is, under our conditions, uniformly continuous in (λ, µ, a), and ρ′ is uniformly

continuous in its argument on [δ, δ̄].

Step 3. By similar arguments, g1µ, g1a, g2λ, g2µ, and g2a are defined as the integral of the

relevant derivative, and are continuous. Finally, giθ and giu0 are trivially continuous. Hence, G

is continuously differentiable on a neighborhood of κ0. Indeed, by similar arguments, G is twice

continuously differentiable, noting in specific that

ρ′′(σ) =
(u′)3

−u′′

[
3
u′′

u′
− u′′′

u′′

]
(ψ(σ)),

and so since u is C3, ρ′′ is continuous on the compact interval [δ, δ̄], and hence it is bounded.

Step 4. By the argument in Jewitt et al. (2008), ∇G(κ0) 6= 0. Hence, by the Implicit Func-

tion Theorem for Ck functions (Fiacco (1983), Theorem 2.4.1), λ and µ are twice continuously

differentiable functions of (a, u0, θ) in a neighborhood of (a0, u0
0, θ

0). �

The reader may wonder at the level of detail displayed in this proof. To see that there is

something to prove, consider u = logw. Then (see Moroni and Swinkels (2014) for details), it

is easy to exhibit first, combinations of ca, c, and u0 for which no optimal contract exists, and

second, combinations of ca, c, and u0 for which the optimal contract has v(x) = −∞, and at which

the relevant integrals cease to be continuous (let alone differentiable) in the relevant parameters.
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Lemma 12 implies that the cost function C is twice differentiable on E , and also that α is

continuously differentiable.

Another differentiability argument we have used in the text is about the integrals
∫
vθf and∫

vfa. It can be justified as follows:

Lemma 13 Let (α(θ0), S(θ0), θ0) ∈ E. Then, for all a,
∫
v(x, θ)f(x|a)dx is differentiable in θ at

θ0, with
∂

∂θ

∫
v(x, θ0)f(x|a)dx =

∫
vθ(x, θ

0)f(x|a)dx,

and similarly,
∫
v(x, θ0)f(x|a)dx is differentiable in a at a, with

∂

∂a

∫
v(x, θ0)f(x|a)dx =

∫
v(x, θ0)fa(x|a)dx.

Proof We will show the result for the case of differentiation by θ since the other case is similar.

We must show first that v(x, θ0)f(x|a) is integrable. This follows as before since

|v(x, θ0)| ≤ max
(
|v(x, θ0)|, |v(x̄, θ0)|

)
<∞.

Next we show that, under decoupling, vθ exists and it is uniformly bounded. To see this, note

first that v(x, θ) = ρ(λ(θ) + µ(θ)l(x|α(θ))) and so

vθ(x, θ) = ρ′(λ(θ) + µ(θ)l(x|α(θ)))(λ′(θ) + µ′(θ)l(x|α(θ)) + µ(θ)la(x|α(θ))α′(θ)).

As before, let τ < δ < λ0 +µ0l(x|a0), and let λ0 +µ0l(x̄|a0) < δ̄ < τ̄ . Since α is continuous, for all

θ sufficiently close to θ0, λ(θ) + µ(θ)l(x|α(θ)) ∈ [δ, δ̄], and so, as before, ρ′(λ(θ) + µ(θ)l(x|α(θ)))

is uniformly bounded on a neighborhood of θ0. Also, since α and S are C1, λ(θ) and µ(θ) are

continuously differentiable on some neighborhood of θ0. But then, since l and la are uniformly

bounded, we can also uniformly bound (λ′(θ)+µ′(θ)l(x|α(θ))+µ(θ)la(x|α(θ))α′(θ)) on the relevant

neighborhood. It follows that vθ is uniformly bounded on the neighborhood, and the lemma follows

from Bartle (1966), Corollary 5.9. �

Of course, for decoupling to work, it has to be that the resultant moral-hazard subproblem

has a solution for each θ. That is, we need to know that (α(θ), S(θ), θ) ∈ E for all θ. By Moroni

and Swinkels (2014), one set of conditions is given by the following lemma.

Lemma 14 Assume that w̄ = v̄ =∞, w = v = −∞, τ = 0, and τ̄ =∞. Then, for all (a, u0, θ) ,

(a, u0, θ) ∈ E.

Proof Direct from Moroni and Swinkels (2014). �
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This Lemma, however, does not cover important cases such as u = ln (w) or u =
√
w, because

in each case, w = 0 > −∞. Our next lemma covers u =
√
w, but does not cover u = lnw.

Lemma 15 Let w̄ = v̄ = ∞, w = 0, and τ̄ = ∞. Assume further that ρ′(τ)τ is increasing and

diverges in τ . Then, there is a threshold û such that for all ū ≥ û, (α(θ), S(θ), θ) ∈ E for all θ.

Proof For any given a, and µ > 0, let i(µ, a) =
∫
ρ(µ(l(x|a)− l(x|a)))fa(x|a)dx. Note that

i(µ, a) =

∫
ρ′(µ(l(x|a)− l(x|a)))µlx(x|a)(−Fa(x|a))dx

=

∫
1

l(x|a)− l(x|a)
[ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))]lx(x|a)(−Fa(x|a))dx,

and so, since ρ′(τ)τ is increasing in τ , it follows that the bracketed term, and hence i(·, a), is

increasing in µ. Let m = mina l(x̄|a)− l(x|a) > 0, and let

σ = − min
{(x,a)|m

2
≤l(x|a)−l(x|a)≤ 3m

4 }
lx(x|a)Fa(x|a) > 0.

Then,

i(µ, a)

≥
∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))

l(x|a)− l(x|a)
lx(x|a)(−Fa(x|a))dx

≥ 4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))dx

≥ 4σ

3m
ρ′
(
µ
m

2

)
µ
m

2

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
dx ≥ 4σ

3m

m

4 max{x,a} lx (x|a)
ρ′
(
µ
m

2

)
µ
m

2

=
σ

3 max{x,a} lx (x|a)
ρ′
(
µ
m

2

)
µ
m

2
,

where the first inequality follows from the fact that the integrand is positive, the second from

l(x|a)− l(x|a) ≤ 3m/4, the third from the monotonicity of ρ′(τ)τ , and the fourth by integration.

Notice that the lower bound on i(µ, a) thus obtained diverges in µ. Hence, there exists µ̂ such

that i(µ, a) > ca(a, θ̄) for all a, and µ > µ̂. Let

û = max
a

∫
ρ(µ̂(l(x|a)− l(x|a)))f(x|a)dx ≤ ρ

(
µ̂max

a
(l(x̄|a)− l(x|a))

)
<∞.

It follows from Proposition 1 of Moroni and Swinkels (2014), along with i(·, a) increasing, that

(α(θ), S(θ), θ) ∈ E for all θ for any ū > û. In particular, at any θ, S(θ) + c(α(θ), θ) > ū > û. �

Finally, let us consider the case u = logw (for which ρ′(τ)τ is identically 1, so the previous
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result does not apply). Then, as in the proof of the previous lemma,

i (µ, a) ≥ 4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
ρ′(µ(l(x|a)− l(x|a)))µ(l(x|a)− l(x|a))dx

=
4σ

3m

∫
{x|m2 ≤l(x|a)−l(x|a)≤ 3m

4 }
dx ≥ 4σ

3m

m

4 maxx,a lx (x|a)
≡ s,

and so, if we assume that ca(ā, θ̄) ≤ s, then Proposition 1 of Moroni and Swinkels (2014) applies.
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