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Summary. In their seminal paper on the principal-agent model with moral
hazard, Grossman and Hart (1983) show that if the agent’s utility function is
U (I , a) = −e−k (I −a), then the loss to the principal from being unable to observe
the agent’s action is increasing in the agent’s degree of absolute risk aversion.
Their proof is restricted to the case where the number of observable outcomes is
equal to two, and it uses an argument that is specific to that case. In this note, we
provide an alternative proof that generalizes their result to any (finite) number
of outcomes.
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1 Introduction

Contracting problems with moral hazard have been widely studied in the eco-
nomics literature in the last twenty years. The standard paradigm is the principal-
agent problem, where a risk neutral principal hires a risk averse agent to perform
a certain task, but she cannot observe the action the agent takes. The contract is
based on an observable stochastic outcome that depends on the agent’s action.
The basic problem for the principal in this situation is to design a compensation
scheme that maximizes her expected profits.
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It is well known that, compared to the first best case with observable actions,
there is a nonnegative loss to the principal from being unable to observe the
agent’s action; i.e., her expected profits are smaller in the presence of moral
hazard. However, this loss is zero if the agent is risk neutral.

In their seminal contribution, Grossman and Hart (1983) (henceforth GH)
developed a useful two-step methodology to analyze the principal-agent problem
when the number of outcomes is finite and the agent’s preferences over income
lotteries are independent of his actions. Among the numerous important issues
addressed in their paper, they considered the following: since there is no in-
centive problem when the agent is risk neutral, but one exists when he is risk
averse, does the loss to the principal increase when the agent becomes more
risk averse? They immediately pointed out (GH p. 38) a difficulty in answering
this question, namely, that ifU (a, I ) is the agent’s von Neumann-Morgenstern
utility function that exhibits the aforementioned independence property, then an
increasing concave transformation of this function (i.e., making the agent more
risk averse) in general won’t satisfy this property. In order to avoid this difficulty,
they restricted attention to the case where the set of actions is a subset of the real
line andU (a, I ) = −e−k (I −a), k > 0.1 Assuming a finite number of actions and
two outcomes, they were able to show that the loss to the principal is increasing
in k ; i.e., the more risk averse the agent is, the more costly is the incentive
problem for the principal. The proof relies on an argument that is specific to the
two-outcome case.

In this note, we provide an alternative proof that generalizes their result to
any (finite) number of outcomes.2

2 Preliminaries

The incentive problem faced by the risk neutral principal is denoted by (A, U , U ,
q , π), whereA is the agent’s action set, a finite subset of the real line;U (a, I ) =
−e−k (I −a), k > 0, is the agent’s vonNeumann-Morgenstern utility function that
depends on his incomeI and his actiona; U = −e−kα is the agent’s reservation
utility, i.e. if he doesn’t work for the principal he can obtain elsewhere a level
of (certain) incomeα; q = (q1, ..., qn ) is the set of possible observable outcomes
for the principal,q1 < q2 < ... < qn ; π(a) = (π1(a), ..., πn (a)) is the probability
distribution over the outcomes if the agent chooses the actiona, and it is assumed
that πi (a) > 0 for everya ∈ A and i = 1, ..., n. An incentive scheme is simply

1 This functional form has received considerable attention in empirical applications of the GH
approach. See Haubrich (1994) and Haubrich and Popova (1998).

2 We recently became aware of a paper by Thiele and Wambach (1999) that analyzes how an
increase in the agent’s initial wealth affects the seriousness of the incentive problem. They provide
a set of conditions under which the principal may prefer a ‘poorer’ agent. A change in the agent’s
initial wealth affects both his degree of risk aversion and the marginal rate of substitution between
income and effort. Unlike Thiele and Wambach (1999), we (as GH) focus on a case with no wealth
effects and with no changes in the marginal rate of substitution between income and effort as the
agent becomes more risk averse.
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a vector (I1, ..., In ), where Ii is the agent’s compensation when the outcome
observed isqi .

Let B (a) =
∑n

i=1 qi πi (a) be the expected gross benefit for the principal when
the agent takes an actiona, and letC (a, k ) be the minimum expected cost for
the principal if she wants to implement actiona, when the agent’s coefficient
of absolute risk aversion isk . Formally, C (a, k ) is the value function of the
problem

min
I1,...,In

n∑

i=1

πi (a)Ii (1)

subject to

−
n∑

i=1

e−k (Ii −a)πi (a) ≥ −e−kα

−
n∑

i=1

e−k (Ii −a)πi (a) ≥ −
n∑

i=1

e−k (Ii −a′)πi (a
′) ∀a ′ ∈ A,

with the convention thatC (a, k ) = ∞ if the constraint set is empty.
GH introduced the following two-step procedure to solve for the optimal

contract: first, for eacha ∈ A, find C (a, k ); then, find thea ∈ A that solves
maxa∈A B (a)−C (a, k ). They defined the loss to the principal from being unable
to observe the agent’s action as

L(k ) = max
a∈A

(B (a) − CFB (a)) − max
a∈A

(B (a) − C (a, k )),

whereCFB (a) is the value function of problem (1) when the action is observable
(first best case); it is easy to show thatCFB (a) = a + α, which is independent
of k .

The following result can be found in GH on p. 39:

Proposition 1 If n = 2, then L(k ) is increasing in k .

In the next section, we provide a more general proof that holds for anyn ≥ 2.
It makes use of the following result:

Lemma 1 Let g(v) = − ln(−v)+ c
v , v < 0, c > 0. Then (i) g is strictly concave on

the interval (−2c, 0) and strictly convex on (−∞,−2c); (ii) g(
∑n

i=1 πi (a)vi ) ≥∑n
i=1 πi (a)g(vi ) if

∑n
i=1 πi (a)vi ≥ −c, πi (a) > 0 and vi < 0 for every i .

Proof. See the Appendix.

3 The result

Rewrite (1) as follows:

max
v1,...,vn

−
n∑

i=1

πi (a)h(vi ) (2)
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subject to

eka
n∑

i=1

πi (a)vi ≥ U

eka
n∑

i=1

πi (a)vi ≥ eka′
n∑

i=1

πi (a
′)vi ∀a ′ ∈ A,

vi ∈ (−∞, 0), i = 1, ..., n,

where h(vi ) = − ln(−vi )
k , vi = −e−kIi , and U = −e−kα; obviously, the value

function of this problem is−C (a, k ).
The following results will be needed:

Claim 1 If the constraint set is nonempty, then there exists a unique solution to
problem (2).

Existence follows from Proposition 1 in GH, where they show that the constraint
set is closed and one can artificially bound it. Since the objective function is
strictly concave and the constraints are linear, the solution is unique.

Claim 2 The value function of problem (2) is differentiable in k , and the derivative
is given by − dC (a,k )

dk = ∂L

∂k , where L is the Lagrangean of problem (2) evaluated
at the optimum.

The conclusion follows because Claim 1 and the assumptions made ensure that
the conditions of the Envelope Theorem in Milgrom (1999), Corollary 5, are
satisfied.

Claim 3 If the constraint set of problem (2) is nonempty, then eka
∑n

i=1 πi (a)vi =
U at the optimum.

This follows from Proposition 2 in GH, which holds for the cost minimization
problem for any given action for which a solution to problem (2) exists.3

We are now ready to prove the main result of the paper:

Proposition 2 For any n ≥ 2, L(k ) is increasing in k .

Proof. As in GH, it suffices to show thatC (a, k ) is increasing ink for eacha ∈ A
wheneverC (a, k ) is finite. Since− dC (a,k )

dk = ∂L

∂k , we will prove that∂L

∂k ≤ 0.
Let λ and µa′ , a ′ ∈ A, be the Lagrange multipliers associated with the

individual rationality and incentive compatibility constraints of problem (2). By
Claim 2, we can use the Envelope Theorem and obtain

∂L

∂k
= − 1

k2

n∑

i=1

πi (a) ln(−vi ) + λ(aeka
n∑

i=1

πi (a)vi + αU ) +

∑

a′∈A

µa′ (aeka
n∑

i=1

πi (a)vi − a ′eka′
n∑

i=1

πi (a
′)vi ). (3)

3 If it did not hold with equality, then the principal could offervi (1 + ε), i = 1, ..., n andε > 0;
this vector satisfies all the constraints and has a lower expected cost for the principal.
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Now, ∂L

∂vi
= 0 is equivalent to

−1
k

πi (a)
vi

= λekaπi (a) +
∑

a′∈A

µa′ (ekaπi (a) − eka′
πi (a

′)). (4)

Multiplying both sides of (4) byvi , adding overi , using Claim 3 and the com-
plementary slackness conditionsµa′ ∂L

∂µa′ = 0 gives

λ =
ekα

k
.

Inserting this expression in (4) and adding overi yields

−1
k

n∑

i=1

πi (a)
vi

− ek (α+a)

k
=

∑

a′∈A

µa′ (eka − eka′
). (5)

µa′ ∂L

∂µa′ = 0 and Claim 3 imply that for alla ′ ∈ A

µa′eka′
n∑

i=1

πi (a
′)vi = µa′eka

n∑

i=1

πi (a)vi = µa′U ,

which allows us to rewrite (3) as follows:

∂L

∂k
= − 1

k2

n∑

i=1

πi (a) ln(−vi ) − 1
k

(α + a) +
∑

a′∈A

µa′U
(
a − a ′) .

Now, by convexity

eka′ − eka ≥ keka (a ′ − a),

for all a ′ ∈ A.
SinceU < 0 andµa′ ≥ 0,

kekaµa′U (a − a ′) ≤ µa′U (eka − eka′
).

Adding overa ′ and using (5) yields

keka
∑

a′∈A

µa′U (a − a ′) ≤
∑

a′∈A

µa′U (eka − eka′
)

= U (−1
k

n∑

i=1

πi (a)
vi

− ek (α+a)

k
)

=
1
k

(eka + e−kα
n∑

i=1

πi (a)
vi

).

Therefore
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k2∂L

∂k
≤

n∑

i=1

πi (a)(− ln(−vi ) +
e−k (α+a)

vi
) − k (α + a) + 1

=
n∑

i=1

πi (a)g(vi ) − k (α + a) + 1

≤ g(
n∑

i=1

πi (a)vi ) − k (α + a) + 1,

where the last two lines use the definition ofg and property (ii) of Lemma 1,
respectively, withc = e−k (α+a) and

∑n
i=1 πi (a)vi = −c, which follows by Claim

3.
But it is straightforward to show thatg(

∑n
i=1 πi (a)vi ) = k (α + a) − 1; hence

∂L

∂k ≤ 0 and dC (a,k )
dk ≥ 0, completing the proof of the proposition.4 ��

Appendix

Proof of Lemma 1. (i) follows by straightforward differentiation. Observe thatg is
(strictly) decreasing on the interval (−c, 0) and (strictly) increasing on (−∞,−c);
to prove (ii), we first show that, ifβy + (1 − β)z ≥ −c wherez < y < 0 and
0 < β < 1, then

g(βy + (1− β)z ) ≥ βg(y) + (1− β)g(z ). (6)

Notice that, if z ≥ −2c, then (6) follows from the first part of (i). Suppose
z < −2c; it is obvious thaty > βy + (1−β)z ≥ −c > z . Let 0≤ θ < 1 be such
that

βy + (1− β)z = θy + (1− θ)(−c).

Algebraic manipulation yields

θ = 1− (1 − β)(y − z )
y + c

.

Sincez < −c and

β = 1− (1 − β)(y − z )
y − z

,

it follows that β > θ.

4 A careful inspection of the proof reveals that, except for the case where all the components of
the vector (v1, v2, ..., vn ) are equal,C (a, k ) is actually strictly increasing ink .
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Therefore

g(βy + (1− β)z ) = g(θy + (1− θ)(−c))

≥ θg(y) + (1− θ)g(−c)

= θ(g(y) − g(−c)) + g(−c)

≥ β(g(y) − g(−c)) + g(−c)

= βg(y) + (1− β)g(−c)

≥ βg(y) + (1− β)g(z ), (7)

where the first inequality uses (i), the second follows fromβ > θ andg decreasing
on (−c, 0), and the last one uses the fact thatg is increasing on (−∞,−c).

We now complete the proof as follows. Suppose that
∑n

i=1 πi (a)vi ≥ −c; it
is obvious thatvi ≥ −c for at least onei . If vi ≥ −2c for every i , then from
the first part of (i)

g(
n∑

i=1

πi (a)vi ) ≥
n∑

i=1

πi (a)g(vi ).

If vi < −2c for somei , let I1 = {i : vi < −c} andI2 = {i : vi ≥ −c}; these
are nonempty sets. Consider

β =
∑

i∈I2

πi (a),

y =
∑

i∈I2

πi (a)
β

vi ,

z =
∑

i∈I1

πi (a)
1 − β

vi .

Notice that 0< β < 1 and

βy + (1− β)z =
n∑

i=1

πi (a)vi ;

moreover,y > −c > z (this follows from the fact that
∑n

i=1 πi (a)vi ≥ −c,
πi (a) > 0 for every i , andvi < −2c for somei imply that vi > −c for some
i ∈ I2).

As before, let 0≤ θ < β < 1, be such thatβy + (1− β)z = θy + (1− θ)(−c).
Following the same steps as in (7) we get

g(
n∑

i=1

πi (a)vi ) = g(βy + (1− β)z )

≥ βg(y) + (1− β)g(−c)

≥ β
∑

i∈I2

πi (a)
β

g(vi ) + (1− β)
∑

i∈I1

πi (a)
1 − β

g(−c)

≥
n∑

i=1

πi (a)g(vi ),
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where the second inequality uses (i) and
∑

i∈I1

πi (a)
1−β = 1, and the last line follows

becauseg is increasing on (−∞,−c). ��
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