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Abstract: Most search engines do their text query and 
retrieval based on keyword phrases. However, publishers 
cannot anticipate all possible ways in which users search 
for the items in their documents. In fact, many times, there 
may be no direct keyword match between a search phrase 
and descriptions of items that are perfect “hits” for the 
search. We present a highly automated solution to the 
problem of bridging the semantic gap between item 
information and search phrases. Our system can learn rule-
based definitions that can be ascribed to search phrases 
with dynamic connotations by extracting structured item 
information from product catalogs and by utilizing a 
frequent itemset mining algorithm. We present 
experimental results for a realistic e-commerce domain. 
Also, we compare our rule-mining approach to vector-
based relevance feedback retrieval techniques and show 
that our system yields definitions that are easier to validate 
and perform better.  
 
Keywords: E-commerce, Data Mining, Frequent Itemsets, 
Web Data, Information Retrieval, Information Extraction, 
Relevance Feedback. 
 
1. Introduction 
Most search engines do their text query and retrieval using 
keywords. The average keyword query length is under 
three words (2.2 words [5]). Recent research [3] found that 
40 percent of companies rate their search tools as “not very 
useful” or “only somewhat useful.” Further, a review of 89 
sites [3] found that 75 percent have keyword search engines 
that fail to retrieve important information and put results in 
order of relevance; 92 percent fail to provide guided search 
interfaces to help offset keyword deficiencies [3], and 
seven out of 10 web shoppers were unable to find products 
using the search engine, even when the items were stocked 
and available. 
 
The Defining Problem: Publishers cannot anticipate all 
possible ways in which users search for the items in their 
documents. In fact, many times, there may be no direct 
keyword match between a search phrase and descriptions of 
items that are perfect “hits” for the search. For example, if 
a shopper uses “motorcycle jacket” then, unless the 
publisher or search engine knows that every “leather 

jacket” is a “motorcycle jacket”, it cannot produce all 
matches for user’s search. Thus, for certain phrases, there is 
a semantic gap between the search phrase used and the 
way the corresponding matching items are described. A 
serious consequence of this gap is that it results in 
unsatisfied customers. Thus there is a critical need to boost 
item findability by bridging the semantic gap that exists 
between search phrases and item information.  Closing this 
gap has the strong potential to translate web search traffic 
into higher conversion rates and more satisfied customers. 
 
Issues in Bridging the Semantic Gap: We denote a search 
phrase to be a “target search phrase” if does not directly 
match certain relevant item descriptions.  The semantics of 
items matching such “target search phrases” is implicit in 
their descriptions. For phrases with fixed meanings i.e. 
their connotations do not change such as in “animal print 
comforter”, it is possible to close the gap by extracting their 
meaning with a thesaurus [21] and relating it to product 
descriptions, such as “zebra print comforter” or “leopard 
print bedding” etc. Where they pose a more interesting 
challenge is when their meaning is subjective, driven by 
perceptions, and hence their connotations change over time 
as in the case of “fashionable handbag” and “luxury 
bedding”. The concept of a fashionable handbag is based 
on trends, which change over time, and correspondingly the 
attribute values characterizing such a bag also changes. 
Similarly, the concept of “luxury bedding” depends on the 
brands and designs available on the market that are 
considered as luxury and their attributes. Bridging the 
semantic gap therefore is in essence the problem of 
inferring the meaning of search phrases in all its nuances. 

 
Our Approach: In this paper we present an algorithm that 
(i) structures item information and (ii) uses a frequent 
itemset mining algorithm to learn the “target phrase” 
definitions. 
 
Our Contributions: We present a novel extraction and 
mining approach for inferring the meaning of search 
phrases from keyword matching product information. The 
mined rules can be used by a publisher or a search engine 
to boost the item findability. We present algorithms for: 
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• Automated techniques for extracting attribute-
value pairs from descriptive item names; 

• An optimized heuristic synthesis, on so called 2-
frequent itemset graph, for frequent itemset 
mining. 

 
Next section discusses related work. In Section 3, the 
architecture of the system is presented. In Section 4, we 
present the item name structuring algorithm. In Section 5, 
we present the phrase definition mining algorithm for 
structured data. In Section 6, we present the experimental 
results and comparison with relevance feedback [22] 
method and Section 7 concludes the paper.  
 
2. Related Work 
 
In [14] linguistic analysis is employed to mine the 
descriptions of phrases/queries. Specifically, the work is 
based on patterns such as is a, or, such as, especially, 
including, or other, and other, etc., in order to recognize 
the meaning of a phrase/query. This approach, however 
cannot work well with domains where the target phrase 
does not associate within the context of the above patterns. 
In [2], generalized episodes and episode rules are used for 
Descriptive Phrase Extraction. Episode rules are the 
modification of association rules and episode is the 
modification of frequent set.  An episode is a collection of 
feature vectors with a partial order; authors claimed that 
their approach is useful in phrase mining in Finnish, a 
language that has the relaxed order of words in a sentence. 
In [15], authors present a co-occurrence clustering 
algorithm that identifies phrases that frequently co-occurs 
with the target phrase from the meta-tags of Web 
documents. However, in this paper we address a different 
problem; we attempt to mine the phrase definitions in terms 
of extracted item information, thus, the mined definitions 
can be utilized to connect “search phrases” to real items in 
all their nuances. 
 
The frequent itemset mining problem is to discover a set of 
items shared among a large number of records in the 
database. There are two main search strategies to find the 
frequent items set. Apriori [1] and several other Apriori 
like algorithms adopt Breadth-First-Search model, while 
Eclat [17] and FPGrowth [8] are well known algorithms 
that employ Depth-First manner to search all frequent 
itemsets of a database. Our algorithm also searches for 
frequent itemsets in a Depth-First manner. But, unlike the 
lattice structure used in Eclat or the conditional frequent 
pattern tree used in FPGrowth, we propose the so called 2-
frequent itemset graph and utilize heuristic syntheses to 
prune the search space in order to improve the 
performance. We plan to further optimize our algorithm 
and conduct detailed comparisons to the above algorithms. 
 

The relevance feedback [22] method can also be used to 
refine the original keyword phrase by using the document 
vectors [23] of the extracted relevant items as additional 
information. In Section 6, we present experimental results 
and show that the rules that our system learns, by utilizing 
the extracted relevant item information, are easier to 
validate and perform better than retrieval with the 
relevance feedback method. 
 
3. System Description 
 
I. Item Name Structuring:  This component takes a 
product catalogue and extracts structured information for 
mining the phrase based and parametric definitions. 
Details are discussed in Section 4. 
 
II. Mining Search Phrase Definitions: In this phase, we 
divide the phrase definition mining problems into two sub 
problems (i) mining the parametric definitions from 
extracted attribute value pairs of items, and (ii) mining 
phrase based definitions from the long item descriptions. 
Details are discussed in Section 5. 
 
4. Data Labeling 
This section presents the techniques for an e-commerce 
domain, for the sake of providing examples. Our 
techniques can be customized for different domains.  The 
major tasks in this phase are structuring and labeling of 
extracted data. 
 
4.1 Labeling and Structuring Extracted Data 
 
This section describes a technique to partition the short 
product item names into their various attributes. We 
achieve this by grouping and aligning the tokens in the item 
names such that the instances of the same attribute from 
multiple products fall under the same category indicating 
that they are of similar types. The input to our algorithm is 
unlabelled, short, attribute rich product names of similar 
items collected from a web page. An example collection of 
shoe names that this algorithm processes is shown in Figure 
1. The desired output for this data set is the partitioned and 
aligned unlabelled product attributes shown in Table 2. Our 
algorithm is completely unsupervised and does not need 
any labeled training data. It uses frequent word patterns and 
context information to identify and group attributes present 
in the product names. 
The motivation behind doing the partition is to organize 
data. By discovering attributes in product data and 
arranging the values in a table, one can build a search 
engine which can enable quicker and precise product 
searches in an efficient way. One may think why extracting 
attribute information from product names is indeed a 
difficult problem.  
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Figure 1: Example of a Collection of Shoe Names 

The aspect of this problem that makes it challenging can be 
attributed to two properties of such data. First, the products 
that are presented in list-of-product pages of online stores 
may really not have similar attribute information after all! 
The taxonomy the store uses to organize its data may not be 
well set up so that products at a particular leaf node can 
have similar attributes. Secondly, even if similar products 
are grouped in a single page, the way their names are 
presented may still be different. Multiple tokens for a 
single type, missing attributes in the descriptions, 
interchanged order, ambiguity in tokenization are some 
important barriers to formulating an algorithm that 
consistently performs well in all situations. 
 
4.2 The Algorithm 
Since the item names are all obtained from a single source 
and belong to the same category, they are likely to have a 
similar pattern. As mentioned before, our algorithm is 
designed to process collections of such item names without 
any labeling whatsoever. So it can be performed on the fly 
as and when data is extracted from the web sites. Following 
are the general properties of the data our algorithm can 
process: 
 
• Super-Tokens: Any pair of tokens t1, t2 that always 

co-occur together and occur more than once belong 
to a multi token instance of a type.  

• Context: All single tokens occurring between 
identical attribute types belong to the same type. 
This means that if two tokens t1 and t2 from distinct 
item names occur in between same types TL and TR 
then they should be of the same type.  

• Anchor Type: A token that uniquely occurs within 
all item names should belong to a unique type, 
which we call an Anchor Type.  

• Density: Attribute types should be densely 
populated. Meaning that, every type should occur 
within the majority of item names.  

• Ordering: Pairwise ordering of all types should be 
consistent within a collection. 

 
The more the input data adheres to the above mentioned 
properties, the better the results produced will be. 
Tolerance to deviation in these characteristics is very 
reasonable. 
 
The high level steps of the Item Name Partition algorithm 
are: Tokenization, Super Tokenization, Context Based 
Inference, Type Ordering, Density based Merging and 
Concatenation. The execution steps are shown in 
Algorithm  1. 
 
Tokenization: The item names are tokenized by using 
white space characters as delimiters. Tokens are stemmed 
so using the Porter Stemmer [11]. Each item name Di is 
converted into a sequence of tokens t1, t2... 
 
Super Tokenization: The second step identifies multi-
token attributes like `Donald J Pliner', `Bacco Bucci' and 
`Havana Joe' for the example in Figure 1. This is done by 
concatenating any sequence of tokens that are always 
neighboring to each other and co-occurring more than once, 
into a single super-token. 
____________________________________________ 

  Algorithm 1: Item Name Partition 

 
 
Initialization of Types: To initialize, every item name is 
prefixed and suffixed with a Begin and an End token. Next, 
for every unique token ti in the collection of item names D, 
a new type  Ti  is created with ti ∈ Ti. 
 
Context Based Inference: This step aligns tokens from 
different item names under a single type. This step takes 
advantage of tokens repeating across descriptions and 
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operates based on the first assumption, Context, that tokens 
within similar contexts have similar attribute types. 
 
If a token sequences tx,t, ty and t'x, t', t'y  exist in D such that 
tx, t'x ∈Tp and ty, t'y ∈Tq, then combine and replace the types 
of tokens t and t' with a new type Tn = Typeof(t) U 
Typeof(t') . 
 
As an example, the tokens `Collins' and `Forman' occur 
between the same pair of tokens `Bacco Bucci' and `Size'. 
So the Types of these two tokens are combined to form a 
new type containing both tokens. Context based inference 
is applied successively applications until it can not be 
applied anymore. The applications of Context Based 
Inference for the example in Figure 1 are shown in Figure 
2. 
 
Type Ordering: In this step, the set of inferred types T are 
sorted based on their ordering in the original item names. 
We utilize the Pairwise Offset Difference (POD) metric to 
compare different types. 
 

 
Figure 2: Application of Context Based Inference for 

examples in Figure 1 

POD between types Ti and Tj is defined as: 
 

  
where fx is the token offset of x from the start of its item 
name and fy is the token offset of y. If this value is greater 
than zero, then the type Ti comes after type Tj in the sorted 
order. 
 
The example descriptions up to the ordering step can be 
visualized as shown in Figure 3. Each column in the table 
corresponds to a type inferred from the data in Figure 1. 
Due to space constraints, tokens have been aligned such 
that those from the same type are offset at the same 
column. The type numbers the tokens belong to are 
indicated at the top. 
Type Merging: A careful observation of Figure 3 shows 
that some of the neighboring types are fillers for each other. 
Meaning that, they are not instantiated together for any 
item name. Such types are candidates for merging and are 
called merge compatible. Merging at this point is logical 
because of our assumption that the types are densely 
populated. 
 

 

 
Figure 3: The Examples in Figure 1 after Type Ordering 

The next best pair of types to merge is determined by 
scoring all merge compatible types and choosing the pair 
with the highest score. The scoring metric for a pair of 
merge compatible types is the size of their merged type. To 
resolve ambiguities, the following variation of the POD 
distance in Equation (1) between the ambiguous pairs is 
used and the closest one is chosen. Here the absolute 
distances are summed up to ignore the ordering 
between types. 

  
To prevent irrelevant and distant types from bei
together, only those merge compatible typ
between consecutive Anchor Types in the order
considered. The columns T20 and T22 in Figure 3
to Anchor Types. Merging for this example is 
Types 1 to 6, followed by merging of types 7 to
to 19. The result is shown in tabular form in Tab)
 
Merge Concatenation: Finally, merge-conc
performed to eliminate sparsely populated typ
populated types are those with a majority 
values. By our assumption, collections of 
should have dense attributes. This implies that t
a sparsely populated type should be concatena
values of one of the neighboring types. 
neighboring type within its anchor area is foun
absolute POD metric in Equation (2). For the
Table 1, Type 16 is classified as a sparse type
Type 7 is its closest neighbor, its values are 
corresponding values of Type 7 yielding
results/alignment presented in Table 2.  
 
4.3 Experimental Results 
To evaluate the algorithm, our DataRover syste
to crawl and extract list-of-products from the fo
Web sites. 
• www.officemax.com  
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• www.officedepot.com  
• www.acehardware.com  
• www.homeclick.com  
• www.overstock.com 

The first two sites feature office supplies. The third and the 
fourth sites sell hardware goods for construction and home 
improvement. The last site features a variety of products 
from various domains including apparel, electronics, home 
& garden etc. An average of around 250 list-of-product 
pages were extracted from each site and their 
corresponding sets of product names were processed by 
this algorithm. 
 
Random samples of about 25 sets of product names for the 
first two and 10 for the remaining 3 sites were collected for 
output analysis. The type-value pairs and attributes were 
manually inspected and the evaluation measures were 
calculated for each site. 
 
Three metrics were used to measure the effectiveness of the 
algorithm. The first two evaluate the ability to identify 
fragments of the descriptions to the correct type and the last 
one indicates the correctness of the number of attributes. 
 

 
Table 1: Partition Visualized after Type Merging 

Precision in type-value pair detection: This quantity 
indicates how correctly type-value pairs are identified. A 
type-value pair is said to be identified correctly if every 
single token belonging to that value of the attribute being 
described have been identified correctly. It is calculated as 

 
Recall in type-value pair detection: This quantity 
indicates if every existing type-value pair is being 
identified. A lower value for this measure indicates that not 
all type-value instances are being captured by the 
algorithm. It is calculated as 

 

 
Table 2: Partition Visualized at the end of the Algorithm after 

Type Concatenations 

Error Rate in the number of attributes detected: This 
quantity indicates how well the algorithm detects the 
number of attributes described in the set of product names. 
It is calculated as 
 

 
 
The summary of average measures for each web site is 
shown in Table 3. 
 
Before trying to analyze the graphs, it is helpful to be 
aware of the different kind of errors that are possible, and 
how these errors affect the evaluation measures. 
 
• Firstly, types can be wrongly populated. Tokens 

from a description can be misplaced in the wrong 
type. This error will affect the count of type-value 
pairs correctly identified and hence will lower the 
precision as well as the recall. 

• Secondly, multiple types could be incorrectly 
merged. This happens when one of the types are 
sparsely populated. Since the algorithm works based 
on the fact that types are densely populated, type that 
are sparsely populated are merge-concatenated with 
an other neighboring type. This causes a reduction in 
recall because not all the existing type-value pairs 
will be identified. Also, the attribute count error will 
increase because of the missing type. 

• Finally, types may remain split since most of the 
values in the type could have been multi-token 
values. This situation, where types are split but are 
densely populated does not force a merge. This will 
result in extra types in the result and will affect all 
three measures negatively. 

 
The four Web sites are mainly from two domains of 
products which are attribute rich - office supplies and 
hardware. To demonstrate the performance when these 
assumptions are violated, we also chose a fifth web site, 
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Overstock, that sells a wide range of products not 
necessarily attribute rich, whose data sets deviate away 
from the assumptions. 
 

 
Table 3: Summary of Evaluation Measures for Different Web 

Sites for the Items Name Structuring Algorithm 

 
5. Mining the Definition of a Target Phrase 
 
In this section, we introduce the problem of mining 
definitions of a phrase from product data extracted from the 
matching Web pages. Using extraction techniques 
discussed in Section 4 we can retrieve tabular parametric 
attributes of matching products as well as their long 
descriptions. Next, we apply frequent itemset mining 
algorithms to learn the parametric definitions and phrase-
based definitions of target phrases from the extracted  
product data.  
 
First, in Sections 5.1 thru 5.4 we introduce an algorithm 
that finds all frequent itemsets from a database. Section 5.5 
discusses the problem of mining parametric definitions. In 
Section 5.6 textual definition mining is discussed.  
 
Since their introduction in 1994 by Agrawal et al. [1], the 
frequent itemset and association rule mining problems have 
received a lot of attention among data mining research 
community. Over the last decade, many research papers [1, 
6, 8, 17, 9] have been published presenting new algorithms 
as well as improvements on existing algorithms to tackle 
the efficiency of frequent itemset mining problems. The 
frequent itemset mining problem is to discover a set of 
items shared among a large number of transaction instances 
in the database. For example, consider the product 
information database matching ‘trendy shoes’ that we 
extract from retail Web sites. Here, each instance 
represents the collection of product’s <attribute, value> 
pairs for attributes such as brand, price, style, gender, color 
and description (See Figure 11). The discovered patterns 
would be the set of <attribute, value> pairs that most 
frequently co-occur in the database. These patterns define 
the parametric description of the target phrase ‘trendy 
shoe’. 
 
The main features of our frequent itemset mining algorithm 
are as follows: 

1. It uses the vertical Boolean representation to 
encode the database into main memory. 

Specifically, in the database, each column is 
encoded as a Boolean array (bit vector) whose 
length is exactly the number of instances in the 
data set. Each element of the attribute vector 
represents the value of that attribute (occurs or not 
occur) in the corresponding record (instance) 

2. We define and construct the 2-frequent itemset 
Graph and search for all frequent itemsets by 
utilizing this Graph. 

3. We introduce two heuristic functions based on 2-
frequent itemset Graph to prune the search space. 

4. We also discuss optimization techniques that 
exploit the internal structure of our itemsets. 

 
5.1 Boolean representation of the database. 
The advantage of Boolean representation is that many 
logical operations such as superset, subset, set subtraction, 
OR, XOR, etc between any number of attribute vectors can 
be performed extremely fast. 
5.2 Constructing 2-frequent Itemsets Graph. 
The set of 2-frequent itemsets plays crucial role in finding 
all frequent itemsets. The main idea is that, from the 
observation that if {Ii….Ij} is a frequent itemset then all 
pairs of items in this set must also be a frequent itemset. 
Using this property of a frequent set, our algorithm will 
first create a graph that represents the 2-frequent itemsets 
among all items that satisfy the minimum support 
threshold.  
 
The the 2-frequent itemset graph is the directed graph 
G(V,E) which is constructed as follows: 
V = I; I is the set of items that satisfy the minimum support 
in database D. 
E = {(vi,vj) | {i,j} is a 2-frequent itemset and i<j). 
We sort the frequent single items into lexicographical order 
and for a 2-frequent itemset, we construct a directed edge 
from the node (item) whose index is lower to the node 
whose index is higher. 
 
 Example 1. 
                        I1 I2 I3 I4 

1 1 1 0 
0 1 1 1 
1 0 1 0 
1 1 0 0 
0 0 1 1 
1 1 0 0 
0 1 0 1 
1 0 0 1 

 
 
Figure 4. Database I and its 2-frequent item graph 
 

I3

I4

I1

I2
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For this database, if minimum support δ is set to 25%, then 
the 2-frequent itemsets are I1I2, I2I3, I2I4, I3I4. The 2-
frequent itemsets graph would be as in Figure 12. 
 
5.3 Searching for Frequent Itemsets 
The algorithm iteratively starts from every node in the 
graph and recursively traverses depth-first to its 
descendants. At any step k (k>1), the algorithm will choose 
to go to a child node v of the current node so that the path 
from the beginning node to v forms a k-frequent itemset. If 
so, the algorithm will continue expand to v’s children to 
search for (k+1)-frequent itemset and so on. There are 
several algorithms [8, 17] that generate frequent itemsets in 
depth-first manner. A distinguishing feature of our 
algorithm is that it searches on the 2-frequent itemset 
graph.  
 
Finding all 2-frequent set takes O(n2) operations where n is 
the number of frequent single items. Our algorithm utilizes 
the following heuristics to guide the search. 
 
Heuristic 1: At step k, choose only children nodes of node 
vk-1 that have incoming degree greater than or equal to the 
number of visited nodes, counted from the beginning node. 
Incoming degree of a node v, denoted as deg(v) is the 
number of nodes that point to v. The meaning of this 
heuristic is that, if deg(v) is smaller than the number of 
visited nodes (nodes in the path) then there exists at least 
one node among the set of previously visited k-1 nodes that 
does not point to v. In other words, there exists at least one 
node in the current path that does not form a 2-frequent 
itemset with v. Therefore the k-1 nodes in the path (visited 
nodes) and v cannot form a k-frequent itemset hence it is 
pruned out without candidate itemset generation. 
 
Heuristic 2: At step k, choose only children nodes of node 
vk-1 that have the set of incoming nodes that is a superset of 
the set of all k-1 nodes in the visited path. This heuristic, 
which is applied after Heuristic 1, ensures that all 
previously visited nodes in the current path, must point to 
the node in consideration. This is also a necessary 
precondition that each visited node forms a 2-frequent 
itemset with the node in consideration. 
 
Heuristic 1 is efficient since the 2-frequent itemset graph is 
already constructed and the degree of all nodes is stored 
before the search proceeds. Heuristic 2 superset testing 
operation can also be performed efficiently using the bit-
vector representation. Consequently, by utilizing these 
heuristic estimates, we can prune a lot of nodes that cannot 
be added to the visited nodes to form a frequent itemset and 
eliminate a lot of candidate itemset generation. 
   
 
 
 

___________________________________________ 
   Algorithm 2: Frequent Itemset Mining 

 
 
Example. We consider the database in Figure 12 and its 2-
frequent itemset graph. 
The search algorithm starts from vertex I1, I1 has only one 
child i.e. I2. Obviously, I1 and I2 form a 2-frequent itemset. 
The algorithm then goes on to I2’s children. I2 has two 
children i.e. I3 and I4. Heuristic 1 tells the algorithm that 
deg(I3) = 1 is smaller than the number of visited nodes (so 
far, the algorithms has already visited I1 and I2 in this 
iteration). Hence, the algorithm does not consider the set 
{I1, I2, I3}. In other words, the algorithm does not to create 
candidate set {I1, I2, I3}. Now, the algorithm jumps to 
another child of I2, i.e. I4. We can see that deg(I4) = 2 but 
the heuristic 2 tells the algorithm that the set of incoming 
nodes of I4  {I2, I3} is not a superset of the set of visited 
nodes {I1,I2}, hence the algorithm does not have to consider 
the set {I1,I2,I4}. The algorithm then starts other iterations 
on vertices I2, I3, I4 and ends up finding other frequent sets 
{I2, I3}, {I2, I4} and {I3, I4}. 
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5.4. Data Preprocessing 
In order to improve the performance of the algorithm, it is 
necessary to clean the data before running the algorithm. 
The cleansing preprocessing stage will eliminate all 
attributes columns that are infrequent as well as all 
instances that do not contain any frequent attributes. 
 
5.5. Mining Parametric Definition of Phrases. 
Note that, since we extract data from the Web by posing a 
search phrase query to a web search engine, all the 
instances in the data we get contain search phrase. 
Therefore, the association rule generation becomes simple 
by just putting the search phrase into the header of 
association rules and the body of rules is frequent itemsets. 
The support of obtained association rules equals to the 
support of frequent items set in their body since for a rule, 
the search phrase occurs in all instances that the frequent 
itemset (in the body of the rule) occurs. 
 
Next, we would like to utilize the extracted product 
information to mine parametric phrase definition rules 
made up from conjunctions of distinct <attribute, 
value> pairs, like: 
 
Trendy shoe ←  

brand = Steve Madden,  
Color = black,  
material = leather    (1) 

Let us consider the following extracted sample database 
 

ID Brand Style Color Material
01 Paul Green oxford Black leather 
05 Sesto Meucci moc toe Black leather 

Figure 5.  Database II 
 
 
 
 

 
Figure 6. Transformed Database of Database II 

 
In order to facilitate the frequent itemset mining algorithm 
to mine frequent sets in the form of (1), we introduce a 
simple transformation to convert the database in Figure 13 
into the form shown above in Figure 14. 
 
The Database II and its transformed database are called 
frequent itemset equivalent databases. That means each 
frequent itemset of database II is equivalent to a frequent 
itemset in its transformed database. These two databases 
have the same number of instances but the number of items 
in transformed database is much larger than the number of 
items in original database. Specifically, the number of 
items in transformed database is a polynomial of the 
number of items in the original database. 

 
After the transformation, we can apply the frequent itemset 
mining algorithm to transformed database in Figure 14 to 
mine the frequent itemsets in the form (1) for the database 
in Figure 13. For the numeric parametric items, we adopt a 
discretization method to classify the values into discrete 
intervals to facilitate the mining algorithm. For example, 
for Price we have intervals C1=[0-$20], C2 = [$21-$40] and 
so on. Furthermore, we observe that those items in the 
database in Figure 13 that fall into the same attribute class, 
for example, items m1, m2 and m3 never occur pair-wise in 
the same frequent itemset. Therefore, we group items 
corresponding to the same attribute and during the 
construction of 2-frequent itemset graph, the graph never 
contains edges that connect any pair of items that fall into 
the same attribute group. This constraint reduces the search 
space and enhances the performance. 

 
5.6. Mining Textual Definitions of Target Phrases 
Another resource of rich phrase definitions is the long 
product descriptions of the matching products. In the 
Section 4, we have already described how we plan to 
collect long product descriptions from product Web pages 
that matches a given target search phrase. In this section we 
describe the proposed algorithm for mining phrase 
definitions that can connect hidden phrases to product 
descriptions themselves. An example of a long product 
description that matches “trendy shoe” is: 

 
“Get celebrity elegance, stylish look and luxury all in one 
with these Susan Lucci Suede Pumps with Lace-up Detail. 
You can choose from black or camel. The shoe's upper 
features suede and smooth leather with lacing detail at the 
center vamp. The lacing extends from the center top of the 
vamp to the side quarters. The pumps have a snip toe and 
rounded throat line. These shoes also have a manmade 
ribbed outsole to resist slippage and an approx. 3-1/4"H 
suede covered heel. Other features include: Susan Lucci 
TM couture-like, trendy apparel is inspired by her own 
personal collection and is designed for the fashion savvy 
woman who truly appreciates Hollywood glamour and 
style. Incorporating silk blends with stretch fabrics, her 
fashions give you the look of glamour with comfort and 
ease” 

b1 b2 s1 s2 c1 m1 
1 0 1 0 1 1 
0 1 0 1 1 1 

 
One can already identify phrases, such as “celebrity 
elegance”, “stylish look”, “Suede Pumps”, “Lace-up 
Detail”, “smooth leather”, “fashion savvy woman” that 
could indicate “trendy shoe” status for a product. Hence, 
our first step is to identify frequently occurring phrases 
within long descriptions matching a hidden phrase. In order 
to generate candidate phrases first we perform part-of-
speech (POS) tagging and noun and verb phrase chunking 
[20] on the long description to obtain a more structured 
textual description. Part-of-speech (POS) tagging and 
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chunking the above description yields the following 
structure. 
 
The phrases in between ([ … ]) corresponds to noun 
phrases. Next, we generate candidate words, and phrases of 
length two words, three words ect from the noun phrases in 
the matching long descriptions. For the above example this 
would yield a list of words including “celebrity”, 
“elegance”, “stylish” etc, two words phrases such as 
“celebrity elegance”, “stylish look”, “couture-like apparel”, 
“trendy apparel”, and similarly three word phrases such as 
“couture-like trendy apparel”, “fashion savvy woman” etc. 
 

- <TEXT> 
- <P> 

  <S>((Get )) ([ celebrity elegance ]), ([stylish 
look]) and ([ luxury ]) all in one with ([ 
these Susan Lucci Suede Pumps ]) with 
([ Lace-up Detail ]).</S>  

  <S> … 
  <S>([The shoe 's upper features suede ]) and 

([ smooth leather ]) with ([ lacing detail 
]) at ([ the center vamp ]).</S>  

  <S> …  
  <S>([Other features ]) (( include )): ([ Susan 

Lucci ]) ([ s ]) ([ couture-like , trendy 
apparel ]) (( is inspired )) by ([ her own 
personal collection ]) and (( is designed 
)) for ([ the fashion savvy woman ]) who 
(( truly appreciates )) ([ Hollywood 
glamour ]) and ([ style ]).</S>  

  <S> …  
  </P> 

  </TEXT> 
 
In the next step, we utilize the noun phrases as transaction 
instances and mine frequently used phrases from all the 
noun phrases of all the product descriptions that we have 
collected from the Web documents. This step yields 
frequently used phrases such as “stylish look” and 
eliminates not-so-frequent phrases such as “her own 
personal collection”. Notice that the frequent phrases 
generated in this step is richer than frequent bi-gram, or n-
gram models since we can create candidate phrases by 
selecting non-consecutive words such as “couture-like 
apparel” in the candidate phrase generation step. 
 
Next, we use the mined frequent phrases as items and 
create transaction instances by marking all of the frequently 
used phrases matching anywhere in the long description. 
This would yield transaction instances made-up from 
frequently used phrases matching the product descriptions. 
Example: The above long description might yield the 
following transaction instance: 
{“celebrity”, “elegance”, “celebrity elegance”, “luxury”, 
“suede”, “pump”, “suede pump”, “lace-up”, “detail”, “lace-

up detail”, “smooth”, “leather”, “smooth leather”, 
“fashion”, “savvy”, “woman”, “fashion savvy”, “savvy 
woman”, “fashion savvy woman”} 
 
Next we mine the frequent itemsets among instances 
corresponding to the long descriptions to find the phrase 
definitions. Note that, due to our way to construct the 
items, all items are combinations of single words; 
therefore, there are items that subsume other items. As a 
subsequence, there are a lot of redundant final resultant 
frequent itemsets. For example a long description might 
yield the following items: “suede”, “pump”, “suede pump”, 
“fashion”, “savvy”, “woman”, “fashion savvy”, “savvy 
woman”, “fashion savvy woman”. Hence, we only want to 
mine the frequent itemset “suede pump”, “fashion savvy 
woman” because these frequent itemsets subsume the 
former frequent itemsets. The frequent phrases by 
construction form a lattice. 
 
In order to prune the redundant frequent itemsets and also  
to improve the performance of textual definition mining 
process, we integrated into the frequent itemset mining 
algorithm the component that makes use of the above  
lattice structure and visits the items by utilizing the partial 
order in the lattice, from larger to smaller phrases. The 
component will traverse top-down the lattice. If there are 
two items that form a 2-frequent itemset and one subsumes 
the other (one item is a superset of the other) for example 
phrase “fashion savvy woman ” subsumes phrase “savvy 
woman “, then in the 2-frequent itemset graph does not 
contain an edge that connect these two items. This pruning 
technique avoids producing redundant frequent itemsets 
thus improving the performance of the long description 
miner. 
 
6. Experimental Results 
In this section, we show the experimental results for several 
target phrases from three different product categories. The 
extraction engine and the frequent itemset mining 
algorithms that we develop in previous sections are used to 
perform the experiments for the following product 
categories: shoes, handbags and beddings, for the target 
phrases: discount shoes, trendy shoes, fashion handbags, 
luxury bedding and sport beddings. After extracting 
parametric tabular data and long descriptions from Web 
sites for each of the target phrases, we used parametric 
frequent itemset mining algorithm and textual frequent item 
set mining algorithm to mine the phrase definitions. The 
tables below show some of the definitions that were mined. 
It is a relatively easy task for a domain expert to inspect 
and evaluate the quality of such rule-based definitions.  
 
6.1. Comparison to Relevance Feedback Method 
In order to compare the performance of our definition 
miner to standard relevance feedback retrieval method  
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  Parametric Rules  Support

Brand = Jil Sander, material = leather, type = clutch  fashion handbags 4.25% 
Brand = Carla, design = mancini, material = leather  fashion handbags 2.4% 

Brand = Butterfly, design =beaded  fashion handbags 2.4% 
Brand = Sven, material = leather  fashion handbags 10.2% 
Design = beaded, color = pink  fashion handbags 2% 

Fashion 
handbags 

Design = beaded, color = blue, type = tote  fashion handbags 3.2% 

 
 
 
 
 
 
 
                 Parametric Rules  Support

Design = Baffled box, material = cotton     luxury beddings 5% 
Design = Waterford, material = linen     luxury beddings 6% 

Material = silk     luxury beddings 3% 
Luxury 

beddings 
Design = Sussex, material = polyester     luxury beddings 6% 

Design = All American, material = polyester  sport beddings 6% 
Design = All star, material = polyester  sport beddings 9% 

Design = Big and bold  sport beddings 17% 
Sport 

beddings 
Design = sports fan  sport beddings 45% 

 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
                       

 Textual Rules  Support
Satin, embroidery   luxury beddings 1.1% 

Egyptian cotton mate-lass  luxury beddings 0.6% 
Silk, smooth, King set  luxury beddings 0.75% 

Luxury 
beddings 

Piece ensemble  luxury beddings 0.75% 
Addition pillow  sport beddings 0.4% 

American sport ensemble   sport beddings 0.4% Sport 
beddings 

Paraphernalia sport   sport beddings 0.6% 

  Textual Rules  Support
casual, leather   trendy shoes 6% 

fashionable sneaker  trendy shoes 7% 
Wedge edge  trendy shoes 5% 

Trendy 
shoes 

Platform shoes  trendy shoes 6% 
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we mined a large database of shoes (33,000 items) from a 
collection of online vendors. Next, we keyword queried the 
database with the target exemplary search phrase “trendy 
shoe”.From the 166 keyword matching shoes, we mined 
rule-based phrase definitions for “trendy shoes” yielding 
rules such as fashionable sneaker, platform shoes etc. that 
were validated by a domain expert. These mined rules 
matched 3,653 additional shoes. Alternatively, we also 
computed the relevance feedback query vector using the 
above 166 matching shoes.  We also identified a similarity 
threshold by finding the maximal cosine theta, Θ, between 
the relevance feedback query vector and all of the 166 shoe 
vectors. Retrieval using the relevance feedback vector with 
this threshold yields more than 29,000 matches out of 
33,000! The light colored bars in Figure 8 above illustrate 
the histogram plot of the 29,293 instances that falls into 
various similarity ranges. Similarly, the dark colored bars 
plots the similarity ranges of the 3,653 shoes that were 
retrieved by matching with our mined definitions. As can 
be seen from the distributions in the above chart, the items 
retrieved with our mined definitions have a very uniform 
similarity distribution (with around 300 of these being 
below the threshold), as opposed to having a skewed 
distribution towards the higher values of similarity. Since 
dark colored bars correspond to relevant “trendy shoes” 
matching our rules, which were validated by an expert, 
most of these items should have ranked towards the higher 
end of the similarity spectrum. However, relevance 
feedback measure failed to rank them as such; hence, it 
performed poorly for this task. 
 
6.2. Comparison to Relevance Feedback with LSI 
The plot of similarity ranges obtained by ranking the 3,653 
shoes, retrieved with our mined rules, using relevance 
feedback with and without latent semantic indexing (LSI) 
[25] technique is shown in Figure 7. The light colored 
dashed line represents the cosine theta threshold Θ for the 
relevance feedback ranking, similarly the dark colored 
dashed line represents the cosine theta threshold for the 
relevance feedback with LSI. The recall for relevance 
feedback is nearly 93%, however, since it matches 88% of 
a random collection of shoes, its precision is lower. On the 
other hand, even though the ranking of relevance feedback 
with LSI falls onto a higher similarity range, it appears to 
have a much lower recall (of 25%) for this experiment with 
exemplary target phrase “trendy shoes”. 
 
7. Conclusions and Future Work 
Our initial experimental results for mining phrase 
definitions are promising according to our retail domain 
expert who is the Webmaster of an affiliate marketing web 
site. We plan to scale up our experiments to hundreds of 
product categories and thousands of phrases. Also, we 
would like to perform experiments to determine how 

precisely our algorithm learns the definitions of phrases 
that changes their meaning over time. 
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