
Boosting Item Findability: Bridging the Semantic Gap between
Search Phrases and Item Information

Authors

Department of Computer Science
X University,

Address
Email

Abstract: Most search engines do their text query and
retrieval based on keyword phrases. However, publishers
cannot anticipate all possible ways in which users search
for the items in their documents. In fact, many times, there
may be no direct keyword match between a search phrase
and descriptions of items that are perfect “hits” for the
search. We present a highly automated solution to the
problem of bridging the semantic gap between item
information and search phrases. Our system can learn rule-
based definitions that can be ascribed to search phrases
with dynamic connotations by extracting structured item
information from product catalogs and by utilizing a
frequent itemset mining algorithm. We present
experimental results for a realistic e-commerce domain.
Also, we compare our rule-mining approach to vector-
based relevance feedback retrieval techniques and show
that our system yields definitions that are easier to validate
and perform better.

Keywords: E-commerce, Data Mining, Frequent Itemsets,
Web Data, Information Retrieval, Information Extraction,
Relevance Feedback.

1. Introduction
Most search engines do their text query and retrieval using
keywords. The average keyword query length is under
three words (2.2 words [5]). Recent research [3] found that
40 percent of companies rate their search tools as “not very
useful” or “only somewhat useful.” Further, a review of 89
sites [3] found that 75 percent have keyword search engines
that fail to retrieve important information and put results in
order of relevance; 92 percent fail to provide guided search
interfaces to help offset keyword deficiencies [3], and
seven out of 10 web shoppers were unable to find products
using the search engine, even when the items were stocked
and available.

The Defining Problem: Publishers cannot anticipate all
possible ways in which users search for the items in their
documents. In fact, many times, there may be no direct
keyword match between a search phrase and descriptions of
items that are perfect “hits” for the search. For example, if
a shopper uses “motorcycle jacket” then, unless the
publisher or search engine knows that every “leather

jacket” is a “motorcycle jacket”, it cannot produce all
matches for user’s search. Thus, for certain phrases, there is
a semantic gap between the search phrase used and the
way the corresponding matching items are described. A
serious consequence of this gap is that it results in
unsatisfied customers. Thus there is a critical need to boost
item findability by bridging the semantic gap that exists
between search phrases and item information. Closing this
gap has the strong potential to translate web search traffic
into higher conversion rates and more satisfied customers.

Issues in Bridging the Semantic Gap: We denote a search
phrase to be a “target search phrase” if does not directly
match certain relevant item descriptions. The semantics of
items matching such “target search phrases” is implicit in
their descriptions. For phrases with fixed meanings i.e.
their connotations do not change such as in “animal print
comforter”, it is possible to close the gap by extracting their
meaning with a thesaurus [21] and relating it to product
descriptions, such as “zebra print comforter” or “leopard
print bedding” etc. Where they pose a more interesting
challenge is when their meaning is subjective, driven by
perceptions, and hence their connotations change over time
as in the case of “fashionable handbag” and “luxury
bedding”. The concept of a fashionable handbag is based
on trends, which change over time, and correspondingly the
attribute values characterizing such a bag also changes.
Similarly, the concept of “luxury bedding” depends on the
brands and designs available on the market that are
considered as luxury and their attributes. Bridging the
semantic gap therefore is in essence the problem of
inferring the meaning of search phrases in all its nuances.

Our Approach: In this paper we present an algorithm that
(i) structures item information and (ii) uses a frequent
itemset mining algorithm to learn the “target phrase”
definitions.

Our Contributions: We present a novel extraction and
mining approach for inferring the meaning of search
phrases from keyword matching product information. The
mined rules can be used by a publisher or a search engine
to boost the item findability. We present algorithms for:

 1

• Automated techniques for extracting attribute-
value pairs from descriptive item names;

• An optimized heuristic synthesis, on so called 2-
frequent itemset graph, for frequent itemset
mining.

Next section discusses related work. In Section 3, the
architecture of the system is presented. In Section 4, we
present the item name structuring algorithm. In Section 5,
we present the phrase definition mining algorithm for
structured data. In Section 6, we present the experimental
results and comparison with relevance feedback [22]
method and Section 7 concludes the paper.

2. Related Work

In [14] linguistic analysis is employed to mine the
descriptions of phrases/queries. Specifically, the work is
based on patterns such as is a, or, such as, especially,
including, or other, and other, etc., in order to recognize
the meaning of a phrase/query. This approach, however
cannot work well with domains where the target phrase
does not associate within the context of the above patterns.
In [2], generalized episodes and episode rules are used for
Descriptive Phrase Extraction. Episode rules are the
modification of association rules and episode is the
modification of frequent set. An episode is a collection of
feature vectors with a partial order; authors claimed that
their approach is useful in phrase mining in Finnish, a
language that has the relaxed order of words in a sentence.
In [15], authors present a co-occurrence clustering
algorithm that identifies phrases that frequently co-occurs
with the target phrase from the meta-tags of Web
documents. However, in this paper we address a different
problem; we attempt to mine the phrase definitions in terms
of extracted item information, thus, the mined definitions
can be utilized to connect “search phrases” to real items in
all their nuances.

The frequent itemset mining problem is to discover a set of
items shared among a large number of records in the
database. There are two main search strategies to find the
frequent items set. Apriori [1] and several other Apriori
like algorithms adopt Breadth-First-Search model, while
Eclat [17] and FPGrowth [8] are well known algorithms
that employ Depth-First manner to search all frequent
itemsets of a database. Our algorithm also searches for
frequent itemsets in a Depth-First manner. But, unlike the
lattice structure used in Eclat or the conditional frequent
pattern tree used in FPGrowth, we propose the so called 2-
frequent itemset graph and utilize heuristic syntheses to
prune the search space in order to improve the
performance. We plan to further optimize our algorithm
and conduct detailed comparisons to the above algorithms.

The relevance feedback [22] method can also be used to
refine the original keyword phrase by using the document
vectors [23] of the extracted relevant items as additional
information. In Section 6, we present experimental results
and show that the rules that our system learns, by utilizing
the extracted relevant item information, are easier to
validate and perform better than retrieval with the
relevance feedback method.

3. System Description

I. Item Name Structuring: This component takes a
product catalogue and extracts structured information for
mining the phrase based and parametric definitions.
Details are discussed in Section 4.

II. Mining Search Phrase Definitions: In this phase, we
divide the phrase definition mining problems into two sub
problems (i) mining the parametric definitions from
extracted attribute value pairs of items, and (ii) mining
phrase based definitions from the long item descriptions.
Details are discussed in Section 5.

4. Data Labeling
This section presents the techniques for an e-commerce
domain, for the sake of providing examples. Our
techniques can be customized for different domains. The
major tasks in this phase are structuring and labeling of
extracted data.

4.1 Labeling and Structuring Extracted Data

This section describes a technique to partition the short
product item names into their various attributes. We
achieve this by grouping and aligning the tokens in the item
names such that the instances of the same attribute from
multiple products fall under the same category indicating
that they are of similar types. The input to our algorithm is
unlabelled, short, attribute rich product names of similar
items collected from a web page. An example collection of
shoe names that this algorithm processes is shown in Figure
1. The desired output for this data set is the partitioned and
aligned unlabelled product attributes shown in Table 2. Our
algorithm is completely unsupervised and does not need
any labeled training data. It uses frequent word patterns and
context information to identify and group attributes present
in the product names.
The motivation behind doing the partition is to organize
data. By discovering attributes in product data and
arranging the values in a table, one can build a search
engine which can enable quicker and precise product
searches in an efficient way. One may think why extracting
attribute information from product names is indeed a
difficult problem.

 2

Figure 1: Example of a Collection of Shoe Names

The aspect of this problem that makes it challenging can be
attributed to two properties of such data. First, the products
that are presented in list-of-product pages of online stores
may really not have similar attribute information after all!
The taxonomy the store uses to organize its data may not be
well set up so that products at a particular leaf node can
have similar attributes. Secondly, even if similar products
are grouped in a single page, the way their names are
presented may still be different. Multiple tokens for a
single type, missing attributes in the descriptions,
interchanged order, ambiguity in tokenization are some
important barriers to formulating an algorithm that
consistently performs well in all situations.

4.2 The Algorithm
Since the item names are all obtained from a single source
and belong to the same category, they are likely to have a
similar pattern. As mentioned before, our algorithm is
designed to process collections of such item names without
any labeling whatsoever. So it can be performed on the fly
as and when data is extracted from the web sites. Following
are the general properties of the data our algorithm can
process:

• Super-Tokens: Any pair of tokens t1, t2 that always

co-occur together and occur more than once belong
to a multi token instance of a type.

• Context: All single tokens occurring between
identical attribute types belong to the same type.
This means that if two tokens t1 and t2 from distinct
item names occur in between same types TL and TR
then they should be of the same type.

• Anchor Type: A token that uniquely occurs within
all item names should belong to a unique type,
which we call an Anchor Type.

• Density: Attribute types should be densely
populated. Meaning that, every type should occur
within the majority of item names.

• Ordering: Pairwise ordering of all types should be
consistent within a collection.

The more the input data adheres to the above mentioned
properties, the better the results produced will be.
Tolerance to deviation in these characteristics is very
reasonable.

The high level steps of the Item Name Partition algorithm
are: Tokenization, Super Tokenization, Context Based
Inference, Type Ordering, Density based Merging and
Concatenation. The execution steps are shown in
Algorithm 1.

Tokenization: The item names are tokenized by using
white space characters as delimiters. Tokens are stemmed
so using the Porter Stemmer [11]. Each item name Di is
converted into a sequence of tokens t1, t2...

Super Tokenization: The second step identifies multi-
token attributes like `Donald J Pliner', `Bacco Bucci' and
`Havana Joe' for the example in Figure 1. This is done by
concatenating any sequence of tokens that are always
neighboring to each other and co-occurring more than once,
into a single super-token.
__

 Algorithm 1: Item Name Partition

Initialization of Types: To initialize, every item name is
prefixed and suffixed with a Begin and an End token. Next,
for every unique token ti in the collection of item names D,
a new type Ti is created with ti ∈ Ti.

Context Based Inference: This step aligns tokens from
different item names under a single type. This step takes
advantage of tokens repeating across descriptions and

 3

operates based on the first assumption, Context, that tokens
within similar contexts have similar attribute types.

If a token sequences tx,t, ty and t'x, t', t'y exist in D such that
tx, t'x ∈Tp and ty, t'y ∈Tq, then combine and replace the types
of tokens t and t' with a new type Tn = Typeof(t) U
Typeof(t') .

As an example, the tokens `Collins' and `Forman' occur
between the same pair of tokens `Bacco Bucci' and `Size'.
So the Types of these two tokens are combined to form a
new type containing both tokens. Context based inference
is applied successively applications until it can not be
applied anymore. The applications of Context Based
Inference for the example in Figure 1 are shown in Figure
2.

Type Ordering: In this step, the set of inferred types T are
sorted based on their ordering in the original item names.
We utilize the Pairwise Offset Difference (POD) metric to
compare different types.

Figure 2: Application of Context Based Inference for

examples in Figure 1

POD between types Ti and Tj is defined as:

where fx is the token offset of x from the start of its item
name and fy is the token offset of y. If this value is greater
than zero, then the type Ti comes after type Tj in the sorted
order.

The example descriptions up to the ordering step can be
visualized as shown in Figure 3. Each column in the table
corresponds to a type inferred from the data in Figure 1.
Due to space constraints, tokens have been aligned such
that those from the same type are offset at the same
column. The type numbers the tokens belong to are
indicated at the top.
Type Merging: A careful observation of Figure 3 shows
that some of the neighboring types are fillers for each other.
Meaning that, they are not instantiated together for any
item name. Such types are candidates for merging and are
called merge compatible. Merging at this point is logical
because of our assumption that the types are densely
populated.

Figure 3: The Examples in Figure 1 after Type Ordering

The next best pair of types to merge is determined by
scoring all merge compatible types and choosing the pair
with the highest score. The scoring metric for a pair of
merge compatible types is the size of their merged type. To
resolve ambiguities, the following variation of the POD
distance in Equation (1) between the ambiguous pairs is
used and the closest one is chosen. Here the absolute
distances are summed up to ignore the ordering
between types.

To prevent irrelevant and distant types from bei
together, only those merge compatible typ
between consecutive Anchor Types in the order
considered. The columns T20 and T22 in Figure 3
to Anchor Types. Merging for this example is
Types 1 to 6, followed by merging of types 7 to
to 19. The result is shown in tabular form in Tab)

Merge Concatenation: Finally, merge-conc
performed to eliminate sparsely populated typ
populated types are those with a majority
values. By our assumption, collections of
should have dense attributes. This implies that t
a sparsely populated type should be concatena
values of one of the neighboring types.
neighboring type within its anchor area is foun
absolute POD metric in Equation (2). For the
Table 1, Type 16 is classified as a sparse type
Type 7 is its closest neighbor, its values are
corresponding values of Type 7 yielding
results/alignment presented in Table 2.

4.3 Experimental Results
To evaluate the algorithm, our DataRover syste
to crawl and extract list-of-products from the fo
Web sites.
• www.officemax.com

 4
(2)
ng merged
es that are
ed types are
 correspond

done for the
 15, and 16
le 1.
(1
atenation is
es. Sparsely
of missing

item names
he tokens of
ted with the
The closest
d using the

 example in
s, and since
appended to
 the final

m was used
llowing five

• www.officedepot.com
• www.acehardware.com
• www.homeclick.com
• www.overstock.com

The first two sites feature office supplies. The third and the
fourth sites sell hardware goods for construction and home
improvement. The last site features a variety of products
from various domains including apparel, electronics, home
& garden etc. An average of around 250 list-of-product
pages were extracted from each site and their
corresponding sets of product names were processed by
this algorithm.

Random samples of about 25 sets of product names for the
first two and 10 for the remaining 3 sites were collected for
output analysis. The type-value pairs and attributes were
manually inspected and the evaluation measures were
calculated for each site.

Three metrics were used to measure the effectiveness of the
algorithm. The first two evaluate the ability to identify
fragments of the descriptions to the correct type and the last
one indicates the correctness of the number of attributes.

Table 1: Partition Visualized after Type Merging

Precision in type-value pair detection: This quantity
indicates how correctly type-value pairs are identified. A
type-value pair is said to be identified correctly if every
single token belonging to that value of the attribute being
described have been identified correctly. It is calculated as

Recall in type-value pair detection: This quantity
indicates if every existing type-value pair is being
identified. A lower value for this measure indicates that not
all type-value instances are being captured by the
algorithm. It is calculated as

Table 2: Partition Visualized at the end of the Algorithm after

Type Concatenations

Error Rate in the number of attributes detected: This
quantity indicates how well the algorithm detects the
number of attributes described in the set of product names.
It is calculated as

The summary of average measures for each web site is
shown in Table 3.

Before trying to analyze the graphs, it is helpful to be
aware of the different kind of errors that are possible, and
how these errors affect the evaluation measures.

• Firstly, types can be wrongly populated. Tokens

from a description can be misplaced in the wrong
type. This error will affect the count of type-value
pairs correctly identified and hence will lower the
precision as well as the recall.

• Secondly, multiple types could be incorrectly
merged. This happens when one of the types are
sparsely populated. Since the algorithm works based
on the fact that types are densely populated, type that
are sparsely populated are merge-concatenated with
an other neighboring type. This causes a reduction in
recall because not all the existing type-value pairs
will be identified. Also, the attribute count error will
increase because of the missing type.

• Finally, types may remain split since most of the
values in the type could have been multi-token
values. This situation, where types are split but are
densely populated does not force a merge. This will
result in extra types in the result and will affect all
three measures negatively.

The four Web sites are mainly from two domains of
products which are attribute rich - office supplies and
hardware. To demonstrate the performance when these
assumptions are violated, we also chose a fifth web site,

 5

Overstock, that sells a wide range of products not
necessarily attribute rich, whose data sets deviate away
from the assumptions.

Table 3: Summary of Evaluation Measures for Different Web

Sites for the Items Name Structuring Algorithm

5. Mining the Definition of a Target Phrase

In this section, we introduce the problem of mining
definitions of a phrase from product data extracted from the
matching Web pages. Using extraction techniques
discussed in Section 4 we can retrieve tabular parametric
attributes of matching products as well as their long
descriptions. Next, we apply frequent itemset mining
algorithms to learn the parametric definitions and phrase-
based definitions of target phrases from the extracted
product data.

First, in Sections 5.1 thru 5.4 we introduce an algorithm
that finds all frequent itemsets from a database. Section 5.5
discusses the problem of mining parametric definitions. In
Section 5.6 textual definition mining is discussed.

Since their introduction in 1994 by Agrawal et al. [1], the
frequent itemset and association rule mining problems have
received a lot of attention among data mining research
community. Over the last decade, many research papers [1,
6, 8, 17, 9] have been published presenting new algorithms
as well as improvements on existing algorithms to tackle
the efficiency of frequent itemset mining problems. The
frequent itemset mining problem is to discover a set of
items shared among a large number of transaction instances
in the database. For example, consider the product
information database matching ‘trendy shoes’ that we
extract from retail Web sites. Here, each instance
represents the collection of product’s <attribute, value>
pairs for attributes such as brand, price, style, gender, color
and description (See Figure 11). The discovered patterns
would be the set of <attribute, value> pairs that most
frequently co-occur in the database. These patterns define
the parametric description of the target phrase ‘trendy
shoe’.

The main features of our frequent itemset mining algorithm
are as follows:

1. It uses the vertical Boolean representation to
encode the database into main memory.

Specifically, in the database, each column is
encoded as a Boolean array (bit vector) whose
length is exactly the number of instances in the
data set. Each element of the attribute vector
represents the value of that attribute (occurs or not
occur) in the corresponding record (instance)

2. We define and construct the 2-frequent itemset
Graph and search for all frequent itemsets by
utilizing this Graph.

3. We introduce two heuristic functions based on 2-
frequent itemset Graph to prune the search space.

4. We also discuss optimization techniques that
exploit the internal structure of our itemsets.

5.1 Boolean representation of the database.
The advantage of Boolean representation is that many
logical operations such as superset, subset, set subtraction,
OR, XOR, etc between any number of attribute vectors can
be performed extremely fast.
5.2 Constructing 2-frequent Itemsets Graph.
The set of 2-frequent itemsets plays crucial role in finding
all frequent itemsets. The main idea is that, from the
observation that if {Ii….Ij} is a frequent itemset then all
pairs of items in this set must also be a frequent itemset.
Using this property of a frequent set, our algorithm will
first create a graph that represents the 2-frequent itemsets
among all items that satisfy the minimum support
threshold.

The the 2-frequent itemset graph is the directed graph
G(V,E) which is constructed as follows:
V = I; I is the set of items that satisfy the minimum support
in database D.
E = {(vi,vj) | {i,j} is a 2-frequent itemset and i<j).
We sort the frequent single items into lexicographical order
and for a 2-frequent itemset, we construct a directed edge
from the node (item) whose index is lower to the node
whose index is higher.

 Example 1.
 I1 I2 I3 I4

1 1 1 0
0 1 1 1
1 0 1 0
1 1 0 0
0 0 1 1
1 1 0 0
0 1 0 1
1 0 0 1

Figure 4. Database I and its 2-frequent item graph

I3

I4

I1

I2

 6

For this database, if minimum support δ is set to 25%, then
the 2-frequent itemsets are I1I2, I2I3, I2I4, I3I4. The 2-
frequent itemsets graph would be as in Figure 12.

5.3 Searching for Frequent Itemsets
The algorithm iteratively starts from every node in the
graph and recursively traverses depth-first to its
descendants. At any step k (k>1), the algorithm will choose
to go to a child node v of the current node so that the path
from the beginning node to v forms a k-frequent itemset. If
so, the algorithm will continue expand to v’s children to
search for (k+1)-frequent itemset and so on. There are
several algorithms [8, 17] that generate frequent itemsets in
depth-first manner. A distinguishing feature of our
algorithm is that it searches on the 2-frequent itemset
graph.

Finding all 2-frequent set takes O(n2) operations where n is
the number of frequent single items. Our algorithm utilizes
the following heuristics to guide the search.

Heuristic 1: At step k, choose only children nodes of node
vk-1 that have incoming degree greater than or equal to the
number of visited nodes, counted from the beginning node.
Incoming degree of a node v, denoted as deg(v) is the
number of nodes that point to v. The meaning of this
heuristic is that, if deg(v) is smaller than the number of
visited nodes (nodes in the path) then there exists at least
one node among the set of previously visited k-1 nodes that
does not point to v. In other words, there exists at least one
node in the current path that does not form a 2-frequent
itemset with v. Therefore the k-1 nodes in the path (visited
nodes) and v cannot form a k-frequent itemset hence it is
pruned out without candidate itemset generation.

Heuristic 2: At step k, choose only children nodes of node
vk-1 that have the set of incoming nodes that is a superset of
the set of all k-1 nodes in the visited path. This heuristic,
which is applied after Heuristic 1, ensures that all
previously visited nodes in the current path, must point to
the node in consideration. This is also a necessary
precondition that each visited node forms a 2-frequent
itemset with the node in consideration.

Heuristic 1 is efficient since the 2-frequent itemset graph is
already constructed and the degree of all nodes is stored
before the search proceeds. Heuristic 2 superset testing
operation can also be performed efficiently using the bit-
vector representation. Consequently, by utilizing these
heuristic estimates, we can prune a lot of nodes that cannot
be added to the visited nodes to form a frequent itemset and
eliminate a lot of candidate itemset generation.

 Algorithm 2: Frequent Itemset Mining

Example. We consider the database in Figure 12 and its 2-
frequent itemset graph.
The search algorithm starts from vertex I1, I1 has only one
child i.e. I2. Obviously, I1 and I2 form a 2-frequent itemset.
The algorithm then goes on to I2’s children. I2 has two
children i.e. I3 and I4. Heuristic 1 tells the algorithm that
deg(I3) = 1 is smaller than the number of visited nodes (so
far, the algorithms has already visited I1 and I2 in this
iteration). Hence, the algorithm does not consider the set
{I1, I2, I3}. In other words, the algorithm does not to create
candidate set {I1, I2, I3}. Now, the algorithm jumps to
another child of I2, i.e. I4. We can see that deg(I4) = 2 but
the heuristic 2 tells the algorithm that the set of incoming
nodes of I4 {I2, I3} is not a superset of the set of visited
nodes {I1,I2}, hence the algorithm does not have to consider
the set {I1,I2,I4}. The algorithm then starts other iterations
on vertices I2, I3, I4 and ends up finding other frequent sets
{I2, I3}, {I2, I4} and {I3, I4}.

 7

5.4. Data Preprocessing
In order to improve the performance of the algorithm, it is
necessary to clean the data before running the algorithm.
The cleansing preprocessing stage will eliminate all
attributes columns that are infrequent as well as all
instances that do not contain any frequent attributes.

5.5. Mining Parametric Definition of Phrases.
Note that, since we extract data from the Web by posing a
search phrase query to a web search engine, all the
instances in the data we get contain search phrase.
Therefore, the association rule generation becomes simple
by just putting the search phrase into the header of
association rules and the body of rules is frequent itemsets.
The support of obtained association rules equals to the
support of frequent items set in their body since for a rule,
the search phrase occurs in all instances that the frequent
itemset (in the body of the rule) occurs.

Next, we would like to utilize the extracted product
information to mine parametric phrase definition rules
made up from conjunctions of distinct <attribute,
value> pairs, like:

Trendy shoe ←

brand = Steve Madden,
Color = black,
material = leather (1)

Let us consider the following extracted sample database

ID Brand Style Color Material
01 Paul Green oxford Black leather
05 Sesto Meucci moc toe Black leather

Figure 5. Database II

Figure 6. Transformed Database of Database II

In order to facilitate the frequent itemset mining algorithm
to mine frequent sets in the form of (1), we introduce a
simple transformation to convert the database in Figure 13
into the form shown above in Figure 14.

The Database II and its transformed database are called
frequent itemset equivalent databases. That means each
frequent itemset of database II is equivalent to a frequent
itemset in its transformed database. These two databases
have the same number of instances but the number of items
in transformed database is much larger than the number of
items in original database. Specifically, the number of
items in transformed database is a polynomial of the
number of items in the original database.

After the transformation, we can apply the frequent itemset
mining algorithm to transformed database in Figure 14 to
mine the frequent itemsets in the form (1) for the database
in Figure 13. For the numeric parametric items, we adopt a
discretization method to classify the values into discrete
intervals to facilitate the mining algorithm. For example,
for Price we have intervals C1=[0-$20], C2 = [$21-$40] and
so on. Furthermore, we observe that those items in the
database in Figure 13 that fall into the same attribute class,
for example, items m1, m2 and m3 never occur pair-wise in
the same frequent itemset. Therefore, we group items
corresponding to the same attribute and during the
construction of 2-frequent itemset graph, the graph never
contains edges that connect any pair of items that fall into
the same attribute group. This constraint reduces the search
space and enhances the performance.

5.6. Mining Textual Definitions of Target Phrases
Another resource of rich phrase definitions is the long
product descriptions of the matching products. In the
Section 4, we have already described how we plan to
collect long product descriptions from product Web pages
that matches a given target search phrase. In this section we
describe the proposed algorithm for mining phrase
definitions that can connect hidden phrases to product
descriptions themselves. An example of a long product
description that matches “trendy shoe” is:

“Get celebrity elegance, stylish look and luxury all in one
with these Susan Lucci Suede Pumps with Lace-up Detail.
You can choose from black or camel. The shoe's upper
features suede and smooth leather with lacing detail at the
center vamp. The lacing extends from the center top of the
vamp to the side quarters. The pumps have a snip toe and
rounded throat line. These shoes also have a manmade
ribbed outsole to resist slippage and an approx. 3-1/4"H
suede covered heel. Other features include: Susan Lucci
TM couture-like, trendy apparel is inspired by her own
personal collection and is designed for the fashion savvy
woman who truly appreciates Hollywood glamour and
style. Incorporating silk blends with stretch fabrics, her
fashions give you the look of glamour with comfort and
ease”

b1 b2 s1 s2 c1 m1
1 0 1 0 1 1
0 1 0 1 1 1

One can already identify phrases, such as “celebrity
elegance”, “stylish look”, “Suede Pumps”, “Lace-up
Detail”, “smooth leather”, “fashion savvy woman” that
could indicate “trendy shoe” status for a product. Hence,
our first step is to identify frequently occurring phrases
within long descriptions matching a hidden phrase. In order
to generate candidate phrases first we perform part-of-
speech (POS) tagging and noun and verb phrase chunking
[20] on the long description to obtain a more structured
textual description. Part-of-speech (POS) tagging and

 8

chunking the above description yields the following
structure.

The phrases in between ([…]) corresponds to noun
phrases. Next, we generate candidate words, and phrases of
length two words, three words ect from the noun phrases in
the matching long descriptions. For the above example this
would yield a list of words including “celebrity”,
“elegance”, “stylish” etc, two words phrases such as
“celebrity elegance”, “stylish look”, “couture-like apparel”,
“trendy apparel”, and similarly three word phrases such as
“couture-like trendy apparel”, “fashion savvy woman” etc.

- <TEXT>
- <P>

 <S>((Get)) ([celebrity elegance]), ([stylish
look]) and ([luxury]) all in one with ([
these Susan Lucci Suede Pumps]) with
([Lace-up Detail]).</S>

 <S> …
 <S>([The shoe 's upper features suede]) and

([smooth leather]) with ([lacing detail
]) at ([the center vamp]).</S>

 <S> …
 <S>([Other features]) ((include)): ([Susan

Lucci]) ([s]) ([couture-like , trendy
apparel]) ((is inspired)) by ([her own
personal collection]) and ((is designed
)) for ([the fashion savvy woman]) who
((truly appreciates)) ([Hollywood
glamour]) and ([style]).</S>

 <S> …
 </P>

 </TEXT>

In the next step, we utilize the noun phrases as transaction
instances and mine frequently used phrases from all the
noun phrases of all the product descriptions that we have
collected from the Web documents. This step yields
frequently used phrases such as “stylish look” and
eliminates not-so-frequent phrases such as “her own
personal collection”. Notice that the frequent phrases
generated in this step is richer than frequent bi-gram, or n-
gram models since we can create candidate phrases by
selecting non-consecutive words such as “couture-like
apparel” in the candidate phrase generation step.

Next, we use the mined frequent phrases as items and
create transaction instances by marking all of the frequently
used phrases matching anywhere in the long description.
This would yield transaction instances made-up from
frequently used phrases matching the product descriptions.
Example: The above long description might yield the
following transaction instance:
{“celebrity”, “elegance”, “celebrity elegance”, “luxury”,
“suede”, “pump”, “suede pump”, “lace-up”, “detail”, “lace-

up detail”, “smooth”, “leather”, “smooth leather”,
“fashion”, “savvy”, “woman”, “fashion savvy”, “savvy
woman”, “fashion savvy woman”}

Next we mine the frequent itemsets among instances
corresponding to the long descriptions to find the phrase
definitions. Note that, due to our way to construct the
items, all items are combinations of single words;
therefore, there are items that subsume other items. As a
subsequence, there are a lot of redundant final resultant
frequent itemsets. For example a long description might
yield the following items: “suede”, “pump”, “suede pump”,
“fashion”, “savvy”, “woman”, “fashion savvy”, “savvy
woman”, “fashion savvy woman”. Hence, we only want to
mine the frequent itemset “suede pump”, “fashion savvy
woman” because these frequent itemsets subsume the
former frequent itemsets. The frequent phrases by
construction form a lattice.

In order to prune the redundant frequent itemsets and also
to improve the performance of textual definition mining
process, we integrated into the frequent itemset mining
algorithm the component that makes use of the above
lattice structure and visits the items by utilizing the partial
order in the lattice, from larger to smaller phrases. The
component will traverse top-down the lattice. If there are
two items that form a 2-frequent itemset and one subsumes
the other (one item is a superset of the other) for example
phrase “fashion savvy woman ” subsumes phrase “savvy
woman “, then in the 2-frequent itemset graph does not
contain an edge that connect these two items. This pruning
technique avoids producing redundant frequent itemsets
thus improving the performance of the long description
miner.

6. Experimental Results
In this section, we show the experimental results for several
target phrases from three different product categories. The
extraction engine and the frequent itemset mining
algorithms that we develop in previous sections are used to
perform the experiments for the following product
categories: shoes, handbags and beddings, for the target
phrases: discount shoes, trendy shoes, fashion handbags,
luxury bedding and sport beddings. After extracting
parametric tabular data and long descriptions from Web
sites for each of the target phrases, we used parametric
frequent itemset mining algorithm and textual frequent item
set mining algorithm to mine the phrase definitions. The
tables below show some of the definitions that were mined.
It is a relatively easy task for a domain expert to inspect
and evaluate the quality of such rule-based definitions.

6.1. Comparison to Relevance Feedback Method
In order to compare the performance of our definition
miner to standard relevance feedback retrieval method

 9

 Parametric Rules Support

Brand = Jil Sander, material = leather, type = clutch fashion handbags 4.25%
Brand = Carla, design = mancini, material = leather fashion handbags 2.4%

Brand = Butterfly, design =beaded fashion handbags 2.4%
Brand = Sven, material = leather fashion handbags 10.2%
Design = beaded, color = pink fashion handbags 2%

Fashion
handbags

Design = beaded, color = blue, type = tote fashion handbags 3.2%

 Parametric Rules Support

Design = Baffled box, material = cotton luxury beddings 5%
Design = Waterford, material = linen luxury beddings 6%

Material = silk luxury beddings 3%
Luxury

beddings
Design = Sussex, material = polyester luxury beddings 6%

Design = All American, material = polyester sport beddings 6%
Design = All star, material = polyester sport beddings 9%

Design = Big and bold sport beddings 17%
Sport

beddings
Design = sports fan sport beddings 45%

 Textual Rules Support
Satin, embroidery luxury beddings 1.1%

Egyptian cotton mate-lass luxury beddings 0.6%
Silk, smooth, King set luxury beddings 0.75%

Luxury
beddings

Piece ensemble luxury beddings 0.75%
Addition pillow sport beddings 0.4%

American sport ensemble sport beddings 0.4% Sport
beddings

Paraphernalia sport sport beddings 0.6%

 Textual Rules Support
casual, leather trendy shoes 6%

fashionable sneaker trendy shoes 7%
Wedge edge trendy shoes 5%

Trendy
shoes

Platform shoes trendy shoes 6%

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity

N
um

be
r o

f d
oc

um
en

t i
te

m

RF
LSI/RF

0

1000

2000

3000

4000

5000

6000

0
0.1

5
0.2

25
0.2

75 0.3
5

0.4
25 0.5

0.5
75

Sim ilarity M easurem ent

N
um

be
r o

f I
ns

ta
nc

es

Vector Space Relevance
Feedback

Def inition Query

 Figure 8. Similarity histogram for rule-based and

relevance feedback based matches
Figure 7. Similarity histogram for relevance feedback and

relevance feedback with LSI

 10

we mined a large database of shoes (33,000 items) from a
collection of online vendors. Next, we keyword queried the
database with the target exemplary search phrase “trendy
shoe”.From the 166 keyword matching shoes, we mined
rule-based phrase definitions for “trendy shoes” yielding
rules such as fashionable sneaker, platform shoes etc. that
were validated by a domain expert. These mined rules
matched 3,653 additional shoes. Alternatively, we also
computed the relevance feedback query vector using the
above 166 matching shoes. We also identified a similarity
threshold by finding the maximal cosine theta, Θ, between
the relevance feedback query vector and all of the 166 shoe
vectors. Retrieval using the relevance feedback vector with
this threshold yields more than 29,000 matches out of
33,000! The light colored bars in Figure 8 above illustrate
the histogram plot of the 29,293 instances that falls into
various similarity ranges. Similarly, the dark colored bars
plots the similarity ranges of the 3,653 shoes that were
retrieved by matching with our mined definitions. As can
be seen from the distributions in the above chart, the items
retrieved with our mined definitions have a very uniform
similarity distribution (with around 300 of these being
below the threshold), as opposed to having a skewed
distribution towards the higher values of similarity. Since
dark colored bars correspond to relevant “trendy shoes”
matching our rules, which were validated by an expert,
most of these items should have ranked towards the higher
end of the similarity spectrum. However, relevance
feedback measure failed to rank them as such; hence, it
performed poorly for this task.

6.2. Comparison to Relevance Feedback with LSI
The plot of similarity ranges obtained by ranking the 3,653
shoes, retrieved with our mined rules, using relevance
feedback with and without latent semantic indexing (LSI)
[25] technique is shown in Figure 7. The light colored
dashed line represents the cosine theta threshold Θ for the
relevance feedback ranking, similarly the dark colored
dashed line represents the cosine theta threshold for the
relevance feedback with LSI. The recall for relevance
feedback is nearly 93%, however, since it matches 88% of
a random collection of shoes, its precision is lower. On the
other hand, even though the ranking of relevance feedback
with LSI falls onto a higher similarity range, it appears to
have a much lower recall (of 25%) for this experiment with
exemplary target phrase “trendy shoes”.

7. Conclusions and Future Work
Our initial experimental results for mining phrase
definitions are promising according to our retail domain
expert who is the Webmaster of an affiliate marketing web
site. We plan to scale up our experiments to hundreds of
product categories and thousands of phrases. Also, we
would like to perform experiments to determine how

precisely our algorithm learns the definitions of phrases
that changes their meaning over time.
References
[1] R. Agrawal and R. Srikant.: “Fast Algorithms for

mining association rules”. In Proc. 20th Int. Conf.
VLDB (1994) 487-499

[2] H. Aholen, O. Heinonen, M. Klemettinen, and A. I.
Verkamo.: “Applying Data Mining Techniques for
Descriptive Phrase Extraction in Digital Collections”.
In Proceedings of ADL’98, Santa Barabara, USA

[3] W. Andrews, “Gartner Report: Visionaries Invade the
2003 Search Engine Magic Quadrant”, April 2003.

[4] V. Crescenzi, G. Mecca, and P. Merialdo,
“Roadrunner:Towards automatic data extraction from
large web sites”, In Proc. of the 2001 Intl. Conf. on
Very Large Data Bases, 2001.

[5] Cutting and R. Douglas.: Real life information
retrieval: Commercial search engines. Part of a panel
discussion at SIGIR 1997: Proc. of the 20th Annual
ACM SIGIR Conference on Research and
Development on Information Retrieval (1997)

[6] B. Goethals, “Survey on Frequent Pattern Mining”,
Department of Computer Science, University of
Helsinki, Finland. Available at:
www.cs.helsinki.fi/u/goethals/publications/survey.pdf

[7] J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and
R. Aranha, “Extracting semi-structure information
from the web”, In Proceedings of the Workshop on
Management of Semistructured Data,1997.

[8] J. Han J.Pei, Y.Yin, and R. Mao. “Mining frequent
pattern without candidate generation.” In Proceedings
of the 2000 ACM SIGMOD International Conference
on Management of Data, volume 29(2) of SIGMOD
Record, ACM Press, 2000.

[9] J. Han, and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, 2001

[10] J. Karlgren.: Non-topical factors in information access.
Invited talk at WebNet '99, Honolulu, Hawaii, USA,
(10,1999)

[11] M.F.Porter. An algorithm for suffix stripping,
Program, 14 no. 3, pp 130-137, July 1980.

[12] N. Kushmerick, D. Weld, and R. Doorenbos,
“Wrapper induction for information extraction”, In
Proc. of the 1997 Intl. Joint Conf. on Artificial
Intelligence, 1997.

[13] B. Len, R.Agrawal, and R. Srikant.: “Discovering
trends in text databases”. In D. Heckerman, H.
Mannila,D. Pregibon, and R. Uthrysamy, editors,
Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining (KDD’97),
Newport Beach, California, USA (8,1997). AAAI
Press 227-230

[14] Y. K. Liu.: Finding Description of Definitions of
Words on the WWW. Master thesis, University of
Sheffield, England, 2000.

 11

http://dis.shef.ac.uk/mark/cv/publications/dissertations/
Liu2000.pdf

[15] Hung V. Nguyen, P. Velamuru, D. Kolippakkam, H.
Davulcu, H. Liu, and M. Ates. Mining "Hidden
Phrase" Definitions from the Web. APWeb 2003, 23-
25, April 2003, Xi'an, China.

[16] M.F.Porter, “An algorithm for suffix stripping”, Program, 14
no. 3, pp 130-137, July 1980.

[17] M.J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data
Engineering, 12(3):372-390, May/June 2000.

[18] B. Chidlovskii. Automatic repairing of web wrappers.
WIDM 2001.

[19] I. H. Witten, E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, October 1999.

[20] Steve Finch and Andrei Mikheev. A Workbench for
Finding Structure in Texts. Applied Natural Language
Processing , Washington D.C., April 1997.

[21] Ellen M. Voorhees. Using WordNet for Text Retrieval.
In WordNet: An Electronic Lexical Database, Edited
by Christiane Fellbaum, MIT Press, May 1998.

[22] G. Salton and C. Buckley. Improving retrieval
performance by relevance feedback. Journal of the
American Society for Information Science, pages 288-
-297, 1990.

[23] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto.
Modern Information Retrieval, ACM Press / Addison-
Wesley, 1999.

[24] H. Davulcu, S. Vadrevu, S. Nagarajan, I.V.
Ramakrishnan. OntoMiner: Bootstrapping and
Populating Ontologies From Domain Specific Web
Sites. In IEEE Intelligent Systems, Volume 18,
Number 5 September/October 2003.

[25] Deerwester, S., Dumais, S. T., Landauer, T. K.,
Furnas, G. W. and Harshman, R. A. Indexing. Latent
semantic analysis. Journal of the Society for
Information Science, 1990, 41(6), 391-407.

 12

http://www.public.asu.edu/~hdavulcu/Mining_phrase.pdf
http://www.public.asu.edu/~hdavulcu/Mining_phrase.pdf

	1. Introduction
	2. Related Work
	3. System Description
	4. Data Labeling
	6. Experimental Results
	6.1. Comparison to Relevance Feedback Method
	6.2. Comparison to Relevance Feedback with LSI
	7. Conclusions and Future Work
	References

