A Clustering Technique for Extracting Tabular Data from Text Documents *

Hasan Davulcu1, Saikat Mukherjee1,2, I.V. Ramakrishnan1,2

1 XSB, Inc. \quad 2 Dept. of Computer Science
Suite 115, Nassau Hall \quad SUNY Stony Brook
Stony Brook, NY 11790, USA \quad Stony Brook, NY 11794, USA

Abstract

Considerable quantities of valuable data about product information and financial statements is often available in sources and formats that are not amenable for querying using traditional database techniques. One such important source is text documents. In such documents these kinds of data often appear in tabular form. A data item in these tables may span several words (e.g. product description). Furthermore items supposedly within the same column do not necessarily begin or end at the same position. Thus the absence of any regularity in column separators makes it difficult to automatically extract data items from such tables. Nevertheless an interesting characteristic often exhibited by these tables is that intra-column items are “closer” to each other than inter-column items. We exploit this observation to develop a clustering technique to extract data items from these tables. We provide a characterization theorem for tables on which this technique will always produce a correct extraction. We discuss the design and implementation of a system for extracting tabular data based on this clustering technique. We present experimental evidence of its effectiveness on real industrial data.

Keywords: clustering, tables, data extraction

Contact Author: Saikat Mukherjee
E-mail: saikat@cs.sunysb.edu

*This work was done as a collaborative industry/university project.
1 Introduction

A wealth of information relevant for electronic commerce often appears in text form. This includes specification and performance data sheets of products created by manufacturers, financial statements published by brokerage houses, product offerings by vendors, etc. Typically these types of product and financial data are published in tabular form. Figure 1 is an illustrative example of a financial statement presented as a table\(^1\) in text form.

<table>
<thead>
<tr>
<th>SEcurities</th>
<th>Rate</th>
<th>Maturity</th>
<th>Amount</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carson City New Sch Dist......</td>
<td>7.700</td>
<td>2001</td>
<td>265,000</td>
<td>267,100</td>
</tr>
<tr>
<td>Trans Authority in the state of Delaware....</td>
<td>7.100</td>
<td>2001</td>
<td>200,000</td>
<td>201,981</td>
</tr>
<tr>
<td>Harrison Cnty MS Sch Dist......</td>
<td>7.000</td>
<td>2002</td>
<td>70,000</td>
<td>72,19</td>
</tr>
<tr>
<td>NYS Environ.Fac Corp.</td>
<td>7.300</td>
<td>2002</td>
<td>500,000</td>
<td>507,985</td>
</tr>
<tr>
<td>Lewisville TX Indpt Sch Dist.....</td>
<td>7.500</td>
<td>2002</td>
<td>300,000</td>
<td>3,137</td>
</tr>
<tr>
<td>Hamilton Twp NJ Sch Dist......</td>
<td>7.000</td>
<td>2002</td>
<td>260,000</td>
<td>270,868</td>
</tr>
<tr>
<td>Lincoln, MI Cons Sch Dist.....</td>
<td>7.000</td>
<td>2003</td>
<td>325,000</td>
<td>345,241</td>
</tr>
<tr>
<td>Tempe, AZ.......</td>
<td>6325</td>
<td>2003</td>
<td>210,000</td>
<td>221,770</td>
</tr>
<tr>
<td>Rowlett, TX.......</td>
<td>6.000</td>
<td>2004</td>
<td>170,000</td>
<td>177,535</td>
</tr>
<tr>
<td>Gladstone MI Pub Schedule in Michigan USA...</td>
<td>6.500</td>
<td>2005</td>
<td>100,000</td>
<td>109,035</td>
</tr>
<tr>
<td>NYS Dorm Auth.....</td>
<td>6.500</td>
<td>2005</td>
<td>250,000</td>
<td>26,806</td>
</tr>
<tr>
<td>FL St Brd Mand SKG.....</td>
<td>7.500</td>
<td>2005</td>
<td>20,000</td>
<td>20,644</td>
</tr>
<tr>
<td>Metro Pier and Expo.</td>
<td>6.250</td>
<td>2005</td>
<td>100,000</td>
<td>108,603</td>
</tr>
<tr>
<td>Metro Pier and Exploration of oil and gas...</td>
<td>6.500</td>
<td>2005</td>
<td>310,000</td>
<td>3,373</td>
</tr>
<tr>
<td>Jackson Miss Pub Sch.....</td>
<td>6.250</td>
<td>2005</td>
<td>130,000</td>
<td>137,765</td>
</tr>
<tr>
<td>NY Dorm Auth.....</td>
<td>7.800</td>
<td>2005</td>
<td>40,000</td>
<td>41,610</td>
</tr>
</tbody>
</table>

Figure 1: A Finance Data Table

One would like to query the information available in tables as in Figure 1 above. However this information which is in unstructured text form, is not readily queryable using traditional database technology such as SQL. One way to make it amenable to standard database querying techniques is to extract the data items in the tables and create a database out of the extracted data. But extracting text data from tables that are “irregular” as in the example above poses some difficulties. In broad terms, irregularity is characterized by variable length data items (perhaps spanning multiple words) that possibly overlap with items in neighboring columns. For example in Figure 1 the item *Gladstone MI Pub Schedule in Michigan USA* in the first column overlaps with items (7,700, 7,000 and 7,000 from the 1st, 2nd and 7th rows respectively) in the second column. In fact this table was one of over several thousand text tables sent to us by a financial data aggregation company that had tasked us to develop an extractor for these tables.

Let us now examine some possible approaches to extraction from such tables. Assume that every character (including white spaces) in a row is assigned a unique position in that row. Since an item in the table is a string, we can further suppose that every item \(i\) in a row is associated with a pair \(<l_i, r_i>\) where \(l_i, r_i\) are the positions where the item begins and ends respectively. A simple approach for extracting items is to find fixed separators between successive columns. Intuitively, a fixed separator

\(^1\)The topmost row denotes the column position of each character and the first column in each row denotes the row number in the table.
is a unique position that distinguishes items occurring in a pair of neighboring columns. In particular if \(p \) is a fixed separator for columns \(k \) and \(k+1 \) then \(\forall \) items \(i \in k, r_i < p \) and \(\forall \) items \(j \in k+1, l_j > p \), i.e. all the items in column \(k \) occur before \(p \) while those in \(k+1 \) occur after \(p \). In fact a recent work [1] uses such an approach for extracting data from tables. But observe in Figure 1 that we cannot always find fixed separators (as in columns 1 and 2 in Figure 1). Even if fixed separators exist it is unclear how they can unambiguously separate columns that have multiword items (e.g. Column 1 in Figure 1). Another technique that is generally used for extracting data from text is based on regular expressions [6]. Regular expressions specify patterns that occur in text and a regular expression processing engine extracts pieces of text that match the specified patterns [4]. Although regular expression based extractors are powerful when dealing with text processing in general, they are quite cumbersome and difficult to use in the presence of tables consisting of items that span several words and overlap with items in other columns. The problem we address in this paper is how do we extract data from tables such as those in Figure 1.

Observe in Figure 1 that although fixed separators between every pair of adjacent columns do not exist, by visual inspection a casual observer can still correctly associate every item to its corresponding column. This is because all the items belonging to a column, despite having irregular alignments, appear clustered more “closely” to each other than to items in different columns. Whereas such clusters can be clearly discerned by a human observer, making them machine recognizable is the key to automated extraction of data items from text-based tables.

In this paper we develop a clustering technique for extracting items from irregular tables. We assume that the tables have headers corresponding to each column. We first formalize the notion of “closeness” of data items. Using this notion we develop an iterative algorithm to partition all the data items into clusters and associate each cluster with a distinct header. We also formalize the notion of a correct extraction for a table and provide a characterization theorem for tables on which our algorithm will always produce a correct extraction.

A number of clustering algorithms have been developed in the past for applications in image processing, machine learning and data mining [8, 3]. We use clustering for the purpose of extracting all the column items from a table embedded within text. To the best of our knowledge applying a clustering technique to this problem has not yet been explored in the research literature.

The rest of the paper is organized as follows. In Section 2 we develop the concept of clustering pertinent to the problem of table extraction as well as the notion of a correct extraction. Based on this clustering concept, we describe an algorithm to extract items from a table. Characterization of tables on which this algorithm always yields a correct extraction also appears in this section. In Section 3 we describe an implementation of our extraction system based on our clustering algorithm and present experimental evidence of its effectiveness on real industrial data. Related work appears in Section 4 and discussions and concluding remarks appear in Section 5.

2 A Clustering Technique for Table Extraction

The problem we address is this: Given the rows of a table embedded in text as the input, create an algorithm that associates the items in the table with their corresponding columns.

We develop a clustering-based algorithm for the above problem. We will require the concept of a cluster appropriate for the above problem. Also observe that the result produced by the algorithm is an association between the items in the table with columns. We therefore need the notion of a correct association to evaluate its output. To formalize all these concepts we first develop the technical machinery required to describe the algorithm and its properties.
2.1 Formalization

We assume that a line in a text table is made up of characters. Each character in a line is associated with a unique position. We will use lines and rows interchangeably. Each row has a unique integer index called its row index. A line is made up of tokens defined as:

Definition 1 (token): A token is a contiguous sequence of characters until either a blank space or a newline character is encountered.

A token t is characterized as a four tuple (start, end, center, row) where:

- start(t) is the position of its first character.
- end(t) is the position of its last character.
- center(t) = start + end \[2\]
- row(t) is the index of the row in which it occurs.

In Figure 1, the item “Delaware....” in row 5 is a token whose start, end, center and row index are 35, 46, 41 and 5 respectively.

Definition 2 (cluster): Let S be a set of tokens. S is a cluster if \(\forall t_k \in S \exists t'_k \in S \) such that: \(\forall t''_k \notin S \),
\[\left| \text{center}(t_k) - \text{center}(t'_k) \right| \leq \left| \text{center}(t_k) - \text{center}(t''_k) \right| \]

We can partition the entire set of tokens into clusters as shown in Figure 2. In the figure, tokens \(t_1, t_4, t_5 \) and \(t_6 \) belong to cluster \(C_1 \) whereas tokens \(t_2, t_3, t_7 \) and \(t_8 \) belong to cluster \(C_2 \). It can be verified that the two clusters satisfy definition 2.

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td></td>
<td>t2</td>
</tr>
<tr>
<td>t4</td>
<td>t5</td>
<td>t6</td>
</tr>
<tr>
<td>t7</td>
<td>t8</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 2: Example of Clusters

Observe in Figure 2 that the positions of tokens in \(C_1 \) precede those in \(C_2 \). We can hence impose a linear order on the set of all clusters in a partition. This ordering will be based on certain “extremal” tokens in the clusters. We now set up the concepts necessary to define this order. First observe in Figure 2 that we can identify certain tokens as being at the boundaries of a cluster.

In the following definitions \(t, t_l \) and \(t_r \) are tokens belonging to the same cluster \(C_i \).

Definition 3 (boundary tokens): Let \(C_i \) denote a cluster and \(j \) be some row. Then,

\[
\text{border}(i, j) = \begin{cases}
\text{undefined}, & \text{if there are no tokens in the row.} \\
t, & \text{if there is only one token } t \text{ in the row.} \\
t_l, t_r, & \text{s.t. } \exists \text{ tokens } t'_l, t'_r \in C_i \land \text{row } j \text{ with } \text{start}(t_l) > \text{start}(t'_r) \land \text{end}(t_r) < \text{end}(t'_r).}
\end{cases}
\]
In Figure 2, the boundary tokens for C_1 are t_1, t_4 and t_6. We can classify all the tokens in a table unambiguously as either boundary or non-boundary tokens. Since every token in a row has unique start and end positions we can define the rightmost and leftmost token of a row in a cluster as:

Definition 4 Let C_i denote a cluster and j denote a row index. Then,

\[
\text{rightmost}(i, j) = \begin{cases}
\text{undefined}, & \exists \text{ a border token } t \text{ with } \text{row}(t) = j, \\
 t, & t \in \text{border}(i, j) \land \exists t' \in \text{border}(i, j) \text{ s.t. } \text{end}(t') > \text{end}(t).
\end{cases}
\]

\[
\text{leftmost}(i, j) = \begin{cases}
\text{undefined}, & \exists \text{ a border token } t \text{ with } \text{row}(t) = j, \\
 t, & t \in \text{border}(i, j) \land \exists t' \in \text{border}(i, j) \text{ s.t. } \text{start}(t') < \text{start}(t).
\end{cases}
\]

For cluster C_1 in Figure 2, the rightmost (leftmost) tokens are t_1 (t_4) for the first row, is undefined for the second row and is t_6 (t_4) for the third row. Note, the rightmost(i, j) or the leftmost(i, j) may not be the spatially rightmost token or leftmost token for the j^{th} row of C_i. The additional requirement is that they be border tokens. We now define the extremal tokens of a cluster.

Definition 5 (extremal tokens): For a cluster C_i the rightmost token is defined as:

\[
\text{rightmost}(i) = \text{rightmost}(i, j) \land \exists j \text{ s.t. rightmost}(i, j') \land \text{end}(ext{rightmost}(i, j)) < \text{end}(ext{rightmost}(i, j')).
\]

\[
\text{leftmost}(i) = \text{leftmost}(i, j) \land \exists j \text{ s.t. leftmost}(i, j') \land \text{start}(ext{leftmost}(i, j)) > \text{start}(ext{leftmost}(i, j')).
\]

In Figure 2, t_6 is the rightmost token of C_1 and t_4 is its leftmost token. We can pick one of the extremal tokens consistently (say the leftmost) from every cluster and use their start positions to linearly order all the clusters in the partition. We will henceforth assume that tokens are partitioned into clusters C_1, C_2, \ldots, C_n where if $i < j$ then C_i occurs before C_j in the order. In Figure 2 we can pick the leftmost tokens in the two clusters and use their start positions to place C_1 before C_2.

We say that C_i and C_j are adjacent if there is no other cluster between them. The span of a cluster C_i, denoted $\text{span}(C_i)$, is the sequence of positions $<\text{start}(\text{leftmost}(i)), \text{start}(\text{leftmost}(i)) + 1, \ldots, \text{end}(ext{rightmost}(i))>$. In Figure 2, $\text{span}(C_1)$ is $<1,2,\ldots,13>$. We are now ready to define the important notion of “closeness” between clusters. Our notion is based on “averaging” the length of inter-cluster gaps between adjacent clusters using their boundary tokens.

We associate a gap between C_i and C_{i-1}, denoted $\text{gap}_\text{on} _ \text{left}(i)$ and a gap between C_i and C_{i+1}, denoted as $\text{gap}_\text{on} _ \text{right}(i)$. The $\text{gap}_\text{on} _ \text{right}$ and the $\text{gap}_\text{on} _ \text{left}$ are defined in terms of intrarow gaps as follows.

Definition 6 (intrarow sep) The gap between cluster C_i and C_{i+1} in the j^{th} row, denoted,

\[
\text{intrarow} _ \text{sep}_r(i, j) = \begin{cases}
\text{start(\text{leftmost}(i + 1, j))} - \text{end(\text{rightmost}(i, j))}, & \text{if both } \text{leftmost}(i + 1, j) \text{ and } \text{rightmost}(i, j) \text{ are defined,} \\
\max(0, \text{start}(\text{leftmost}(i + 1, j)) - \text{end}(\text{rightmost}(i))), & \text{if rightmost}(i, j) \text{ is undefined but } \text{leftmost}(i + 1, j) \text{ is defined.} \\
\max(0, \text{start}(\text{leftmost}(i, j + 1)) - \text{end}(\text{rightmost}(i))), & \text{if rightmost}(i, j) \text{ is undefined but } \text{leftmost}(i, j + 1) \text{ is defined.} \\
0, & \text{if both are undefined.}
\end{cases}
\]

The gap between cluster C_i and C_{i-1} in the j^{th} row, denoted,
\[
\text{intrarow}_{\text{sep}}(i, j) = \begin{cases}
\text{start}(\text{leftmost}(i, j)) - \text{end}(\text{rightmost}(i - 1, j)), \\
\max(0, \text{start}(\text{leftmost}(i, j)) - \text{end}(\text{rightmost}(i - 1, j))), \\
\max(0, \text{start}(\text{leftmost}(i)) - \text{end}(\text{rightmost}(i - 1, j))), \\
0,
\end{cases}
\]

Informally, the intrarow gap between \(C_i \) and \(C_{i+1} \) refers to the gap between a pair of extremal tokens that occur in the same row. We have to take into account the cases where both tokens exist in both the clusters, only one of them exists in one of the clusters and neither exist. In the last case the gap is considered to be undefined. In the case when only one of them exists the closest token is chosen. This choice is made to ensure that the gap is always minimal. Note that no gaps exist between overlapping tokens.

Definition 7 (gaps) \(\text{gap}_{\text{on right}}(i) \) is \(\left(\sum \text{row}_{\text{gap}_{\text{on right}}}(i, j) \right) / M \), where \(M \) is the number of rows of the cluster where \(\text{row}_{\text{gap}_{\text{on right}}}(i, j) > 0 \). Similarly, \(\text{gap}_{\text{on left}}(i) \) is \(\left(\sum \text{row}_{\text{gap}_{\text{on left}}}(i, j) \right) / M \).

In Figure 2, let us consider the three clusters \(C_1 \) consisting of the token \(t_4 \), \(C_2 \) consisting of the tokens \(t_1 \) and \(t_5 \) and \(C_3 \) consisting of the token \(t_6 \). For \(C_2 \), the \(\text{intrarow}_{\text{sep}}(2, 1) = \max(0, \text{start}(t_1) - \text{end}(t_4)) = 0 \), the \(\text{intrarow}_{\text{sep}}(2, 2) = 0 \) (both undefined) and \(\text{intrarow}_{\text{sep}}(2, 3) = \text{start}(t_5) - \text{end}(t_4) = 1 \). Thus, the average inter cluster gap between \(C_1 \) and \(C_2 \), \(\text{gap}_{\text{on left}}(2) = \text{intrarow}_{\text{sep}}(2, 3) \) / 1 = 1.
The gap on right for any cluster is also calculated in a similar way.

2.2 Building blocks

We sketch a high-level overview of our clustering algorithm. It has very close parallels to iterative partition refinement algorithms. Starting with an initial partitioning of the set of tokens into clusters, the partition gets refined in every iteration. Refinement amounts to creating larger clusters by merging adjacent ones based on inter-cluster gaps. The algorithm terminates when no more refinement is possible.

We will now construct the essential building blocks for our algorithm, namely, creating the initial partition, merging of clusters in an iteration and termination.

Initial partitioning The initial partition puts all tokens with a high-degree of overlap into one cluster. Intuitively what this means is that all such tokens belong to the same column. Formally:

Definition 8 (overlapping tokens) : Tokens \(t_i \) and \(t_j \) overlap whenever one of the following holds:

1. \(\text{start}(t_i) \leq \text{start}(t_j) \leq \text{end}(t_i) \).
2. \(\text{start}(t_i) \leq \text{end}(t_j) \leq \text{end}(t_i) \).
3. \(\text{start}(t_j) \leq \text{start}(t_i) \) and \(\text{end}(t_j) \geq \text{end}(t_i) \)

In Figure 2, tokens \(t_2 \) and \(t_3 \) overlap. We use this notion to define:
Definition 9 (high degree of overlap between tokens) : Tokens t_i and t_j, with centers c_i and c_j respectively, have a high degree of overlap whenever:

\[c_i = \begin{cases}
 c_j, & \text{if } c_j \leq c_i \leq c_j + 1 \\
 c_j - 1, & \text{if } c_j + 1 \leq c_i
\end{cases} \]

In Figure 2, tokens t_1 and t_5 have a high degree of overlap between them since $\text{center}(t_1) = 7$ and $\text{center}(t_5) = 8$. From definition 9 it is easy to see that the centers of tokens with a high-degree of overlap occupy consecutive positions. To create the initial set of clusters, we add tokens whose centers are on consecutive positions to the same set. It is easy to see that each such set is a cluster.

Merging clusters We say that adjacent clusters C_i and C_{i-1} are “mutually close” whenever $(\text{gap on left}(i) < \text{gap on right}(i)) \land (\text{gap on right}(i - 1) < \text{gap on left}(i - 1))$. We only merge mutually close clusters into a larger cluster. Once we merge the pair of clusters into a bigger cluster we will have to associate gaps with this bigger cluster. If C_i is merged with C_{i-1} into the cluster C then $\text{gap on left}(i-1)$ and $\text{gap on right}(i)$ become C’s left and right gaps respectively. On the other hand if C_i is merged with C_{i+1} then $\text{gap on left}(i)$ and $\text{gap on right}(i+1)$ become left and right gaps respectively of cluster C.

However even when adjacent clusters are mutually close to each other we do not merge them if they belong to different columns. How do we identify such a case since we are not provided with any information about columns? We use headers for this purpose. We assume that every column is associated with a distinct header string. The span of a header, analogous to that of a cluster, is the sequence of the positions associated with the characters in its string. In Figure 1, the span of the header “SECURITIES” is $<3, 4, 5, ... , 12>$. We say that a cluster is distinctly associated with a header when their spans overlap. We do not merge mutually close clusters whenever they are uniquely associated with their headers. In such a case we say that the clusters belong to different columns.

Termination Note that in an iteration we may fail to merge a pair of adjacent clusters because:

1. They are not mutually close.
2. They belong to different columns.

If in an iteration we are unable to merge any pair of clusters the algorithm terminates.

2.3 Putting it All Together

We present here Algorithm Extract Columns using the building blocks described above. Extract Columns scans the rows of the table as it’s input. It will produce as the result an association of the items in the table with columns. Recall that two adjacent clusters are merged when they are mutually close. To facilitate merger we maintain a variable $link$ with each cluster C_i. During the iteration, $link(C_i)$ points to C_{i-1} (C_{i+1}) if C_i is closer to C_{i-1} (C_{i+1}). In the algorithm, we use G_i to denote the gap between C_i and C_{i+1} i.e. $G_i = \text{gap on right}(C_i) = \text{gap on left}(C_{i+1})$. The procedure Initial Clusters creates the initial partition of tokens into a set of clusters. After that clusters overlapping with the same header are merged together. The procedure Inter Cluster Gaps computes the gaps between adjacent clusters using the initial partitions. The procedure Merge Clusters merges mutually close clusters subject to the condition that their spans do not overlap with two different headers. The merged cluster produced contains the union of the tokens of the two clusters and if either of them is associated with a header.
then the resulting cluster is also associated with the same header.

Algorithm Extract Columns

begin
1. Invoke Initial_Clusters to form the set of initial clusters \(\prod_{C} = \{ C_1, C_2, \ldots, C_n \} \)
2. Invoke Inter_Cluster_Gaps to compute the gaps between the initial clusters, \(Gap = \{ G_1, G_2, \ldots, G_{n-1} \} \)
3. while(\(|\prod_{C} | \neq |\prod_{C'}| \)) do (* a fixpoint check is done *)
 4. \(\prod_{C} = \prod_{C'} \)
 5. \(Gap = Gap' \)
 6. forall i, 1 \leq i \leq |\prod_{C}| do (* for each cluster the gaps between *)
 7. link\((C_i) = \text{nil} \)
 8. end
 9. forall i, 1 \leq i \leq |\prod_{C}| - 2 do (* it’s neighbors are compared *)
 10. if\((G_i \leq G_{i+1}) \) then (* and the closeness of that cluster is determined *)
 11. link\((C_{i+1}) = C_i \)
 12. else
 13. link\((C_{i+1}) = C_{i+2} \)
 14. endif
 15. end
 16. link\((C_1) = C_2 \)
 17. link\((C_{|\prod_{C}|}) = C_{|\prod_{C}|-1} \)
 18. \(j = 1 \)
 19. forall i, 1 \leq i \leq |\prod_{C}| - 1 do (* mutually close clusters are merged *)
 20. if\((\text{link}(C_i) = \text{right} \& \text{link}(C_{i+1}) = \text{left}) \) then (* together to form a single cluster *)
 21. \(C_j = \text{Merge_Clusters}(C_i, C_{i+1}) \)
 22. \(G_j = G_{i+1} \)
 23. \(i = i + 1 \)
 24. else
 25. \(C_j = C_i \)
 26. \(G_j = G_{i+1} \)
 27. endif
 28. \(\prod_{C'} = \prod_{C'} \cup C_j \)
 29. \(Gap'' = Gap'' \cup G_j \)
 30. \(j = j + 1 \)
 31. end
32. endwhile
33. return\(\prod_{C} \)
end

For example, in Figure 2 the initial set of clusters are \(C_1 = \{ t_1 \}, C_2 = \{ t_1, t_5 \}, \ldots, C_5 = \{ t_2, t_3, t_8 \} \). Thus, \(G_1 = 1, G_2 = 1, G_3 = 5, G_4 = 0 \) and \(G_5 = 0 \)

In the first iteration, link\((C_1) = C_2, \text{link}(C_2) = C_1, \text{link}(C_3) = C_2, \text{link}(C_4) = C_5, \text{link}(C_5) = C_4 \) and \(\text{link}(C_6) = C_5 \). So we merge clusters \(C_1 \) and \(C_2 \) and clusters \(C_4 \) and \(C_5 \). Our new set of clusters are \(C_1' = \text{merge}(C_1, C_2), C_2' = C_3, C_3' = \text{merge}(C_4, C_5), \) and \(C_4' = C_6 \). Our new set of intercluster gaps are \(G_1' = G_2, G_2' = G_3, G_3' = G_5 \).

In the second iteration, link\((C_1') = C_2', \text{link}(C_2') = C_1', \text{link}(C_3') = C_4' \) and \(\text{link}(C_4') = C_3' \). Thus, we merge clusters \(C_1' \) and \(C_2' \) and clusters \(C_3' \) and \(C_4' \). Our new set of clusters are \(C_1'' = \text{merge}(C_1', C_2'), C_2'' = \text{merge}(C_3', C_4') \). Our new intercluster gap is \(G_1'' = G_3 \). In the third iteration we reach a fixpoint since we cannot merge these two clusters as they overlap with two different headers. Thus, the algorithm reaches a fixpoint and gives the correct set of clusters.
2.4 Algorithmic Properties

The objective of the underlying algorithm ExtractColumns is to correctly associate items with a column. Can it always do so? Herein we address the question of a correct extraction of columns w.r.t. a table whose columns have been already demarcated by a user. This demarcation represents the “correct extraction” expected by the user. The formalization proceeds as follows.

The span of a column is the contiguous sequence of positions from the start of its leftmost token to the end of its rightmost token. One can conceptually think of the span as two imaginary lines such that the span of no token in the column extends beyond these two lines. Span of a column is a purely visual concept. Using columns we define:

Definition 10 (table): A table is a partition of the tokens into a set of columns \(\text{Col}_1, \text{Col}_2, \ldots, \text{Col}_n \) such that there is a distinct header associated with every column (i.e. their spans overlap) and a token \(t \in \text{Col}_i \iff \text{center}(t) \) is contained in the span of \(\text{Col}_i \).

Note that this definition allows spans of adjacent columns to overlap so long as the centers of the shared tokens belong to only one of the columns. In Figure 1, spans of columns 1, 2, 3, 4 and 5 are \(<3,4,46>, <45,54>, <55,64>, <68,69,80> \) and \(<83,84,92> \) respectively. The headers “SECURITIES”, “RATE”, “MATURITY”, “AMOUNT” and “BASIS” are associated with Columns 1, 2, 3, 4 and 5 respectively.

In the following, we will assume that \(T \) denotes a table whose columns have been demarcated by the user. Suppose the rows of a table \(T \) are supplied as input to ExtractColumns and it produces the clusters \(C_1, C_2, \ldots, C_n \) as it’s output upon termination. We say that this extraction is correct w.r.t. \(T \) iff every \(C_i \) is uniquely associated with a header and there is a bijective mapping between the columns of \(T \) and the extracted clusters. We can guarantee the following:

Theorem 1 If in every iteration ExtractColumns only merges mutually close clusters belonging to the same column of \(T \) then it will always produce a correct extraction of the table \(T \).

We now characterize tables for which ExtractColumns will always yield a correct extraction. We will base this characterization on the gaps between non-overlapping tokens in a column. In the definitions below let \(p, q, q' \) denote tokens.

Definition 11 (token gaps) The gap between token \(p \) and some other token \(q \) (both \(p \) and \(q \) in the same row \(j \) denoted,

\[
\text{intra-row-gap}(p) = \begin{cases}
\text{start}(q) - \text{end}(p), & \text{start}(q) > \text{end}(p) \land \nexists q' \text{ in j s.t. start}(q') < \text{start}(q), \\
\text{undefined}, & \text{otherwise}.
\end{cases}
\]

The gap between token \(p \) and some other token \(q \) not in the same row denoted,

\[
\text{inter-row-gap}(p) = \begin{cases}
\text{start}(q) - \text{end}(p), & \text{start}(q) > \text{end}(p) \land \text{intra-row-gap}(p) \text{ is undefined} \land \nexists q' \text{ s.t. end}(p) < \text{start}(q') < \text{start}(q), \\
\text{undefined}, & \text{otherwise}.
\end{cases}
\]

Let \(\text{column-gap}(i) \) denote the maximum over all intra-row-gaps and inter-row-gaps of tokens in column \(i \). Furthermore let \(\text{column-gap}_r(i) \) and \(\text{column-gap}_{r+1}(i) \) denote the gaps between columns \(i-1, i \) and \(i, i+1 \) respectively.
Theorem 2 (Characterization of tables) For every column i in T, if $\text{columngap}(i) < \text{columngap}_r(i)$ and $\text{columngap}(i) < \text{columngap}(i)$ then ExtractColumns will produce a correct extraction for T.

Proof sketch: Assume ExtractColumns terminates with an incorrect partitioning. This means that in some iteration, a cluster C_i was merged with C_{i+1} while it should have been merged with C_{i-1}. This could only have been possible if the $\text{gap}_{\text{on right}}(i, i + 1) > \text{gap}_{\text{on left}}(i, i - 1)$. Now, since C_i and C_{i-1} both belong to the same column, $\text{gap}_{\text{on left}}(i, i - 1) \leq \text{columngap}(i)$ which is $< \text{gap}_{\text{on right}}(i, i + 1)$ - a contradiction.

For example, in Figure 3, if the user defines table T' with columns C'_1 and C'_2 then our characterization enables us to decide a priori that ExtractColumns will not generate a correct extraction w.r.t. T'. This is because the gap between tokens t_2 and t_5 (both belonging to column C'_1) is more than the gap between C'_1 and C'_2 violating the condition of Theorem 2. If however the user defines table T with columns C_1 and C_2 then our output will be a correct extraction w.r.t. T.

Note, that characterization of tables on which the algorithm is guaranteed to produce a correct extraction is based on the column spans. This information can only be supplied externally as it is not computed by our algorithm. So it may appear that such a characterization may not be useful. However we describe how it can be used in practice especially where the tables are generated automatically such as financial and product data. In these cases all of the tables are “structurally similar”. We can hence sample a few tables and determine whether they satisfy our characterization. In such a case we can run the algorithm over all such tables in a batch knowing a priori that the extraction will be correct. In fact this has been validated in our work with the data provided to us by a financial company and also tables containing electronic part descriptions supplied to us by an electronic component catalog manufacturer.

3 The System

The algorithm has been implemented in Java and the entire system is approximately 3000 lines of code. It has a graphical user interface which is divided into three panels. In order to use this system, an initial setup prior to extraction is required. This consists of:

1. Loading the input files containing the tables. There is an input panel in the GUI where the user can load up a set of files or an entire directory containing all the files.
Figure 4: Excel Output of Extract_Column on the example table in Figure 1

2. Specifying the destination directory where the output tables will be generated. There is an output panel in the GUI where the user can specify this location.

3. Our extraction is a keyword based extraction in the sense that the user specifies the headers of columns to be extracted by their header name. We have a panel in our GUI for loading up these header names. The user can provide the union of all the header names that can possibly occur across all tables.

Our system has been tested on data from a financial company and also on electronic part information. About 400 input files containing financial data were loaded up, with each input file containing 4 or 5 tables, and the algorithm was run in batch mode on them. It took a couple of minutes for our system to extract these 2000 tables and we achieved an accuracy of almost 90%. For example, the output generated by our system (loaded in Microsoft Excel) on the table in Figure 1 is shown in Figure 4. The system provides a facility to generate different output formats from an intermediate representation of the table.

4 Related Work

The importance of table extraction from documents has been recognized in [2]. The work in [5] proposes a text block detection methodology that depends not only on the spatial layout of documents but its
linguistic content as well. The text block merging algorithm in that work is based on setting parameters such as the minimum distance between blocks to merge. It is mentioned that such settings can be a source of errors during column extraction. Our approach does not depend on any parameters and forms clusters automatically in the presence of misalignments and multiple spaces. The work of [7] is based on feature extraction and adaptation of learning techniques for automatically recognizing table boundaries and its rows and columns. The algorithm requires training from a set of sample documents and yields a specialized table extractor with high accuracy on similar documents. Firstly this approach does not yield a generic table extractor such as ours. Secondly, since columns are extracted by detecting certain vertical lines as column separators, it would fail to extract correctly when columns overlap. In contrast our clustering technique can handle overlapping columns. The extraction framework of [6], depends on manual construction of a domain dependent lattice of regular expressions. The algorithm depends on various empirical thresholds which are not easy to discover. Moreover the approach does not appear robust especially when columns can have elements missing in some of its rows. Further is is not clear how regular expressions can handle column elements that span multiple words and data values of different types. Nodose is an interactive system for semi-automated data extraction from documents [1]. It utilizes features like beginning and ending marker keywords or fixed offsets to generate extraction wrappers. As far as table extraction is concerned it can only deal with tables which have fixed column separators. Clustering algorithms have been extensively investigated in machine learning, image processing and data mining disciplines. While clustering algorithms in these areas can be broadly viewed as an optimization technique, our algorithm is geared towards doing a correct extraction of table which is a relatively novel application of clustering. It will be interesting to investigate the connections between optimizing the measures we have used and correct extraction.

5 Concluding Remarks

We have proposed a clustering technique for extracting tabular data from text tables. We have obtained an accuracy of 90% on over 2000 tables containing financial data produced by report generator programs. On the remaining 10% our algorithm extracted items that did not correspond to the actual columns in the table. The reason was that these tables had no header names. Extending our algorithm to yield correct extraction even when headers are missing is an important avenue of future work. It will be useful to automatically identify cases where the algorithm yields incorrect results. On the implementation side it will be useful to integrate an automated table boundary detection algorithm such as the one from [7] into our system. Finally, note that we have used a static measure of gaps between clusters. It would be interesting to investigate if we can identify a dynamic measure of gaps and merge clusters based upon that. Such a measure might yield correct extractions over a larger class of tables.

References

