MAE 494 Project 2

Task 1

Task 2
i) Best Case Obtained

It was decided that the opening at B should be a circular opening that the center of the pipe with 4.3 cm diameter.

The side-pipe geometry should be set up as follows:

The results using these conditions are as follows:

$$
S=0.0326
$$

ii) Description of optimization method used

The method I used to make the mass flow out of each side pipe equal was to first find the optimal opening size of B. To do this, I iterated changing the hole size several times until the best possible size was found as follows:

From this plot, we see that the 4.3 cm diameter opening at B provides the flattest (and therefore best) line. The standard deviation of each of these support my findings:

Opening at B	Standard Deviation of mass flow rate
Open	0.5154
Closed	0.5774
3 cm	0.4858
4 cm	0.2350
4.3 cm	0.0976

After this point, I kept the opening at B constant with a 4.3 cm diameter opening at the center. Now, I only altered the diameters of the side pipes to fine tune the mass flow at each pipe. I first noticed that the mass flow of the pipe at 1 m was low, so I made the diameter larger. I did the same for each other pipe to try to match the mass flow at the first pipe. This process was completed 4 times to find the best possible standard deviation of mass flow rate as follows:

This plot shows the mass flow for each update of the pipe diameters:

The standard deviations were calculated for each update of the pipes to find the most optimal solution:

Iteration \#	Standard Deviation of mass flow rate
1	0.1920
2	0.0598
3	0.0416
4	0.0326

With more iterations of the side pipe diameters, I have no doubt that it would be possible to reduce the standard deviation even further.

