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Task 1 

In this task, I was asked to model the flow over a cylinder and two ellipses. In this case, the cylinder and 

ellipses were placed in a 2-D domain full of water with an inlet velocity of 3.5 cm/s. Standard values 

from the Fluent Database were used. The standard laminar model was used as well.  The mesh used for 

all parts of this task has a resolution of 0.005m. This mesh is displayed in Figures 5 and 6. This simulation 

was run for five minutes with a timestep of 0.25s. The simulation was run for 1200 timesteps at 20 

iterations per timestep. 

Part a) 

i) The Reynolds Number for this case was calculated using the following equation: 

𝑅𝑒 =
𝜌𝑢𝐿

𝜇
=

998.2 ∗ 0.035 ∗ 0.1

0.001003
= 3483.3  

Where L is the diameter of the cylinder (0.1m) and u is the flow velocity (0.035 m/s). 

ii) Figures 1, 2, and 3 contain contour plots of Static Pressure, y-velocity, and stream function for the 

case of flow over a cylinder. These plots also show the two-dimensional computational domain.  

  

 

Figure 1. Task 1 a) Static Pressure Contour 

 

Figure 2. Task 1 a) y-Velocity Contour 



 

These figures show the behavior of the flow 

over the cylinder. It is clear from these plots 

that the flow is not steady and that there 

are oscillations in the flow. These plots, 

along with the line plots of lift force, show 

that the flow is not steady. 

iii) Figure 4 shows the line plot of lift force 

on the cylinder over the last three minutes 

of the five-minute simulation. For the 

deliverables in this report, the “Lift Force” 

report was used in Fluent. This is Option 1 

as listed in the addendum to this project. As 

predicted by the contours, the flow, and 

therefore lift force, are unsteady. The 

oscillations in lift force have an amplitude of 

0.067275 N and a period of 11s. 

  

 

Figure 3. Task 1 a) Stream Function Contour 

 

Figure 4. Task 1 a) Lift Force vs. Time 



Part b) 

In this part of Task 1, part 

a) was repeated with 

ellipses instead of a 

cylinder. In run 2, an 

ellipse with a major axis in 

the y-direction was used, 

while run 3 analyzes an 

ellipse with a major axis in 

the x-direction.  

Figures 7 and 8 show lift 

force vs. time for the last 

three minutes of the 

simulation as in Figure 4. 

As in run 1, the solutions 

are oscillatory. The lift 

force for Run 2 has an 

amplitude of 0.1432 N and 

a period of 12.75s, while 

the lift force for Run 3 has 

an amplitude of 0.03399 N 

and a period of 9.25s.  

 

Figure 5. Run 2 Mesh and Computational Domain 

 

Figure 6. Run 3 Mesh and Computational Domain 

 

 

Figure 8. Task 1 Run 3 Lift Force vs. Time 

 

 

Figure 7. Task 1 Run 2 Lift Force vs. Time 



The results from each of the three runs are presented in table 1. 

Table 1 

 Run 1 (Cylinder) Run 2 (y-elongated ellipse) Run 3 (x-elongated ellipse) 

Amplitude (N) 0.067275 0.1432 0.03399 

Period (s) 11 12.75 9.25 

 

These results show that the amplitude and period increased when the cylinder was elongated into an 

ellipse along the y-axis while the period and amplitude decreased when the cylinder was elongated into 

an ellipse along the x-axis.  

  



Task 2 

In this task, flow over a “flying 

saucer” was modeled in Fluent. 

Unlike Task 1, a full three-

dimensional simulation was used for 

this task. A cylindrical wind tunnel, 

with a velocity inlet on one side and 

a pressure outlet on the other was 

used. A parabolic velocity profile 

was defined for the velocity inlet as 

follows: 

𝑢 = 50 (1 − (
𝑟

𝑅
)

2

) 

Where 

𝑟 = √𝑦2 + 𝑧2 

The profile of the flying 

saucer is defined by a 

geometry file. This file was 

imported as a 3D curve and 

revolved around the y-axis 

to create the profile. A new 

plane was created with the 

same origin as the system 

but rotated about the z-

axis. This is the y-axis used 

for the geometry. Between 

runs, the angle at which this 

new plane is rotated is 

varied to analyze four 

different angles of attack. 

The profile of the saucer is 

“removed” from the 

computational domain 

through the “Boolean” 

function.  

For the analysis, the 

standard k-epsilon model is 

utilized. The computational 

domain is filled with air 

with a constant density of 

 

Figure 9. Task 2 Mesh and Computational Domain 

 

 

Figure 10. Task 2 x-Velocity Contour, θ=0° 

 

Figure 11. Task 2 x-Velocity Contour, θ=45° 



0.4 kg/m^3 and a viscosity of 1.4 x 10^-5 N s 

m^-2. Since a steady solution is sought, 

hybrid initialization was used for each run. 

Four runs are performed at tilt angles of 0, 

15, 30, and 45 degrees.  

The mesh used for this simulation is 

displayed below. For each run, an element 

size of 0.05m meters was used with the 

“capture curvature” option selected. The 

mesh for the 0-degree case is displayed in 

Figure 9, although the same mesh settings 

were used for each run.  

Figures 10 and 11 show the x-velocity 

contours for the 0 and 45-degree cases. 

These plots show the parabolic velocity 

profile at the inlet as well as the effects of 

the flying saucer. Both the 0 and 45-degree cases show an acceleration of flow over the top surface of 

the flying saucer followed by a low, even negative velocity downstream of the saucer. It is important to 

note that the saucer has stalled aerodynamically in the 45-degree case. We can tell because of the flow 

detachment which is shown in Figure 11. The lift and drag results from the simulation also back up this 

observation. 

For the 0, 15, and 30-degree runs, the solution converged smoothly in about 100 iterations. Monitors 

were placed on lift and drag force in Fluent and the simulation was run until these values were steady. 

Because the saucer has stalled in the 45-degree case, the flow is inherently unsteady. Therefore, a 

steady solution cannot be obtained. In this run, the lift and drag forces oscillated and never converged 

to a steady solution. This is expected as the turbulence effects result in unsteady flow under these 

conditions. The Lift and Drag forces as a function of iteration are plotted in Figure 12. This last run was 

run for 400 iterations, since the oscillations and residuals seemed to have stabilized by this point. In 

order to determine lift and drag forces for this run, the value of one peak and trough were determined 

in MATLAB. The average of these two values was then taken to be the force value for the deliverable.  

The lift and drag values for each tilt angle are presented in Table 2 and plotted in Figure 13.  

Table 2 

Tilt Angle (°) Lift Force (N) Drag Force (N) 

0 4.5958 3.1337 

15 24.919 6.9503 

30 52.658 20.775 

45 25.409 37.753 

 

  

 

Figure 12. Task 2 Run 2 Lift Force vs. Time 



Figure 13 shows lift and drag force as a 

function of tilt angle. The plot shows that 

both lift and drag tend to increase as tilt 

angle increases. However, between 30 and 

45 degrees, lift force drops off. This is 

because the surface stalls and the flow 

separates, increasing drag but decreasing 

lift. This phenomenon of stalling and flow 

separation was discussed earlier and is 

shown in Figure 11.   

 

Figure 13. Task 2 Lift and Drag vs Tilt Angle 



Task 3 

In this task, flow is simulated over a 

pentagonal building in a three-

dimensional domain. The domain is a 

rectangular prism with the pentagon 

in the middle. The inlet is set to a 

constant 50 m/s velocity. The domain 

is filled with air set to standard Fluent 

Database settings. The outlet is set to 

a pressure outlet and the remaining 

surfaces are set to walls, with a 

named selection being created for 

the walls of the building. The 

standard k-epsilon turbulence model 

is used for this analysis.  

The mesh used for this analysis was 

set to default settings with an 

element size of 0.2m. I experimented 

with enabling inflation on the 

building’s surface, but this yielded 

similar results at the expense of time. To ensure consistency and to save time and computational power, 

I used the standard 0.2m mesh for both runs. The mesh on the planes of interest for this task is 

displayed in Figure 14.   

  

 

Figure 14. Task 3 Mesh and Computational Domain 



Run (a) 

Figures 15 and 16 show the 

static pressure and y-velocity 

on a plane 1m above and 

parallel to the ground, slicing 

through the building. Figure 

17 shows the y-velocity on the 

plane of symmetry 

perpendicular to the ground. 

In this run, the flat side of the 

pentagon faces the wind. It is 

clear that there is a high-

pressure zone on the upwind 

side of the pentagon and a 

low-pressure zone on the 

downwind side of the 

pentagon. There is a turbulent 

wake on the downwind side of 

the pentagon. The flow 

remains attached on three of 

the five sides.  

The results from Fluent 

yielded a total drag force on 

the building of 3610.39 N, 

10.80 N due to viscous forces, 

and 3599.59 N due to 

pressure forces. 

  

 

Figure 15. Task 3 Run (a) Horizontal Static Pressure Contour 

 

Figure 16. Task 3 Run (a) Horizontal y-Velocity Contour 

 

 

Figure 17. Task 3 Run (a) Vertical y-Velocity Contour 

 



Run (b) 

In this run, conditions are the 

same except the wind is 

flowing into a point of the 

pentagon instead of a flat 

side.  

These results look similar to 

the first case. There is a high-

pressure zone on the leading 

edge and a turbulent low-

pressure wake. However, in 

this case, the effect of the 

wake is much more 

pronounced and the wake is 

much larger.  

The results from Fluent report 

a total drag value of 5323.78 

N, 1.61 N of which due to 

viscous forces and 5322.17 N 

due to pressure. 

There are distinct differences 

between these cases. While it 

might seem surprising that the 

sharp point produces more 

drag than the blunt edge, but 

the plots tell an interesting 

story. In Run (a), there is high 

pressure on one side and low 

pressure on the other four. 

The difference between the 

high-pressure blunt face and 

low pressure on the two 

downstream faces create a 

net drag force in the +y 

direction. However, the other 

two leading edge faces are in 

low pressure, therefore 

decreasing the positive y 

force. This explains why the 

pressure drag is so much 

larger in the second run. In 

the second run, the two 

 

Figure 18. Task 3 Run (b) Horizontal Static Pressure Contour 

 

Figure 19. Task 3 Run (b) Horizontal y-Velocity Contour 

 

Figure 20. Task 3 Run (b) Horizontal Static Pressure Contour 



leading edges are in a high-pressure zone and the three trailing faces are in a low-pressure zone, 

creating a force in the positive y direction with nothing to mitigate this force as in the first run. 

The velocity profiles explain the difference in viscous drag between the two cases. In the first case, the 

flow remains attached on the three leading faces. Because of the no-slip condition, there is a velocity 

gradient in this area. This velocity gradient is steep as shown in the contour. This velocity gradient on 

three of the five faces explains why the viscous forces are greater in the first run. In the second run, the 

flow detaches, leading to a gentler velocity gradient and therefore less viscous drag.   



Task 4 

In this task, I am asked to repeat Task 1 with my chose of asymmetric “cylinder”, if area is about the 

same. The goal is to see a large-amplitude response can be simulated as in Video 3 in the lecture. I ran 

three cases with three different geometries. The three shapes I used were a half circle, a crescent, and a 

triangle with rounded edges. Each shape was placed at the origin as in Task 1. All other settings are the 

same as Task 1. I could not obtain this response in my three runs, so I will present the data for each run. 

The data presented in this Task is Lift Force calculated using the automatic function in Fluent.  

Run A 

For this run, I simulated flow over a half cylinder as demonstrated in the video. The flat side of the 

semicircle is facing the wind. The diameter of this circle is 14.14 cm, which gives the same area as a 

circle with a diameter of 10 cm. The lift force response started to increase in the first minute of the 

simulation, but eventually the response returned to constant amplitude. This case did not create the 

desired result. 

 

 

 

 

 

 

 

 

 

Figure 22. Task 4 Run A Geometry 

 

Figure 21. Task 4 Run A Lift Force vs. Time 

14.14 cm 



 

Run B 

In this case, a simple crescent was used for the geometry. To create this geometry, a semicircular arc 

with a diameter of 16 cm was created. Then, an arc from three points was created, coincident with the 

ends of the semicircle. The radius of the inscribed arc is defined by the distance between the center of 

the arc and the origin, which is colinear with the endpoints of the semicircular arc. This dimension is 

defined as 16 cm. The fluid flows from left to right, into the concave part of the crescent. The results 

show that the period of the response is constant, but the amplitude is somewhat chaotic. While the 

amplitude does trend upwards, the changes in amplitude between each peak is variable and 

unpredictable. I do not consider this run to be a success. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Task 4 Run B Geometry 

 

Figure 23. Task 4 Run B Lift Force vs. Time 

16 cm 

15 cm 



Run C 

In this run, flow was simulated over an equilateral triangle with rounded corners. The base equilateral 

triangle has a side length of 15cm, and the corners have a radius of 1.75cm. This flow was the most 

regular out of all three runs. The amplitude increases nearly linearly for the first four cycles and then 

stays at a constant amplitude.  

 

Figure 25. Task 4 Run C Lift Force vs. Time 

 

Figure 26. Task 4 Run C Geometry 

15 cm 
R = 1.75 cm 


