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Project 1  
Note: No collaboration was done in doing the present Project-1. 

Task 1  

Part a  
To simulate the fluid flow and heat transfer in a water heater, with water as a working                 
fluid. The geometrical parameters are: diameter of the tank D = 0.6 m, height of the                
tank H = 0.8 m, diameter of the inlet and outlet side pipes d = 0.06 m and length is L                     
= 0.15 m, location of the inlet and outlet side pipe from the bottom wall Z1 = 0.6 m and                    
Z2 = 0.2 m respectively. The boundary conditions are: velocity inlet on the inlet side               
pipe with Vin = 0.06 m/s with temperature Tin = 20o C. The outlet side pipe is assigned                  
out flow condition. The bottom wall of the heater is assigned a temperature boundary              
condition as T = 55o C. Standard k-epsilon turbulence model is used in the present               
simulation with full buoyancy effect. The pressure based solver is to be used in the               
present simulation and steady state solution is desired. The gravitational acceleration           
is taken as g = −9.81 m/s2. 
The density is set as Boussinesq for water in order to allow density variation with               
temperature. The operating density is evaluated from below Eq. 1 from the given             
reference and its value is ρ = 993.1448623 kg/m3 . Based on the density, the thermal                
expansion coefficient is evaluated from below Eq. 2 and its value is β=0.000366211/K.             
In the given equation T is the operating temperature and its value is average of               
maximum and minimum of temperatures in the system which is T = 37.5oC.  

ρ = 999.85308+6.3269×10−2T−8.523829×10−3T2+6.943248×10−5T3−3.821216×10−7T4  

(1)  

β = −1/ρ ( dρ /dT)     (2)  
Part b  
To simulate the given problem with the reduced gravity g = -3.72 m/s2 . 

 

 

 

 

 

 



Solution  
Task 1(a)  
 

 
Figure 1 shows the computational domain of the water heater used in the present              
simulation.  
 
 
Deliverable (1 & 2)  
The velocity and the temperature contour plot is shown in Fig 2(a) and (b) 
 

 
(a) 



 
(b) 

Figure 2: (a) Velocity contour at the plane of symmetry and (b) Temperature contour 
at the plane of symmetry.  
 
Deliverable (3)  
The outlet temperature at the steady state is T = 298.01 K which is calculated by the  
Equation (3)  

     (3) 
 

Figure 3: Line plot of the outlet temperature as a function of the number of iterations. 
 
 
The convergence criteria is achieved when the temperature between two iterations 
with an interval of 100 is less than 0.1 K. The temperature difference is observed as 
0.04 K over the 1400 and 1500 interval. 



Deliverable 4: 

Fig. 4  shows the mesh (on the plane of symmetry) that is used in this simulation. The 
element size for the triangular mesh is taken as 2.3 cm. The inflation is led by 
'Program Controlled'. 

 
Figure 4: Mesh resolution at a plane of symmetry. Local mesh refinement at the 
bottom of the cylinder.  

Task 1(b)  
Deliverable (1 & 2)  
The velocity and the temperature contour plot is shown in Fig. 5 when g = −3.72  m/s2.  

 
 

 
(a) 



 

 
(b) 

Figure 5: (a) Velocity contour at the plane of symmetry and (b) Temperature contour 
at the plane of symmetry.  

Deliverable (3)  
The outlet temperature at the steady state is T = 296.33 K which is calculated using                
Eq. 3. The convergence criteria is achieved when the temperature between two            
iterations with intervals of 100 is less than 0.1 K. The temperature difference is              
observed as 0.06 K over the 1400 and 1500 interval.  
 

 
 
Figure 6: Line plot of the outlet temperature as a function of the number of iterations.  

 
 
 



 
Task 2  

To simulate the Fluid flow and heat transfer in a coiled water heater, with water as a                 
working fluid. The helical pipe with its center traced by the equation of the helical               
curve as follows: X(t) = R*cos(t), Y (t) = R*sin(t), and Z(t) = C*t. The curve is traced                  
from t = 0 to t = 12π with R = 0.3 m and C =0.15/2π m. The helical pipe has circular  
cross section with d = 8 cm. The boundary conditions are: velocity inlet at inlet with                
four different values Vin = 0.01, 0.02, 0.04, and 0.08 (m/s) respectively, with             
temperature Tin = 300 K for all the cases. The outlet is assigned as an outflow                
condition. The wall of the heater is assigned heat flux boundary condition with Q =               
600 W/m2. Laminar model to be used in the present simulation. Pressure based             
solver is to be used in the present simulation and steady state solution is desired. No                
gravity to be considered in the present simulation and density is set to be constant for                
water.  

 

Solution  
Figure 7 (a) shows the computational domain of the coiled water heater and Fig. 7(b)               
shows the meshed model with a size of 1.2 cm and the inflation is led by 'Program                 
Controlled’. 

                       
              (a)                                                        (b) 

Figure 7: (a) Computational domain of coiled water heater, (b) meshed model            
generated  

 

 

 

 

 



Deliverable (1)  

The values for ∆T = Tout − Tin for the four different inlet velocities are given in Table 1.                   
Figure 8 shows the plot for ∆T v/s Vin where ∆T is the numerical value obtained by                 
using Eq. 3.  

 

Table 1: Values for ∆T for different inlet velocities Vin  

 

Figure 8: Plot for ∆TNumerical = Tout − Tin v/s the inlet velocity Vin  

This graph shows that the velocity at inlet is inversely proportional to the temperature 
difference. The same can be deduced through analytical calculations. The reason 
behind this fact is that as the fluid velocity increases in the pipe, the residence time 
decreases that affects the temperature rise and as result the outlet temperature is 
less.  The same is shown in Figure 8. 

 

Tout   (K) ∆T = Tout − Tin    (K)  Vin  (m/s)  

308.69  8.6900  0.01 

304.43 4.4300 0.02 

302.25  2.2500 0.04 

 301.13 1.1300 0.08 



Deliverable (2)  
The contour plot for the velocity magnitude and temperature at the outlet surface for 
the case of Vin = 0.08 (m/s) is shown in Fig. 9.  

 

(a) 

 

(b) 
Figure 9: (a) Velocity magnitude at the outlet surface and (b) Temperature contour at 
the outlet surface.  

As observed from Fig. 9 (a), the water velocity at the outer edge of the pipe is higher                  
as compared to the water velocity at the inner edge. This is mainly due to the fact that                  
water particles nearer to the outer edge have to travel more distance in the same               
interval of time as compared to those which travel nearer to the inner edge. Due to                
this phenomena, the heat gained by water nearer to the outer edge will be less as                
compared to heat gained by water nearer to the inner edge. As a result, the               
temperature of water nearer to the outer edge will be less as compared to the               



temperature of water nearer to the inner edge. The same can be concluded from Fig.               
9 (b).  

Task 3  

To simulate the fluid flow and heat transfer in a chamber, with air as a working fluid.                 
The geometrical parameters are: diameter of the chamber D = 30 cm, height of the               
chamber H = 15 cm, diameter of the outlet side pipe d = 5 cm, length of the side pipe                    
is 10 cm. The boundary conditions are: the outlet side pipe is assigned as pressure               
outlet condition with 0 gauge pressure and 20oC as back flow temperature. The             
bottom and top wall of the chamber is assigned as wall boundary condition with heat               
generation as 100 (W/m2). The Laminar model is used in the present simulation. The              
density based solver is to be used in the present simulation and transient simulation              
is to be performed. The density to be set as 'Ideal Gas' for air.  
To calculate the area weighted average velocity,Vout, normal to the surface of the 
outlet based on Eq. 4  

    (4)  
where,ν is the velocity component normal to the surface of the outlet.  

Solution  
Figure 10 (a) shows the computational domain of the chamber and Fig. 10 (b) shows               
the grid used at the plane of symmetry in the present simulation. In the present               
simulation the element size for grid generation is taken as 1 cm. Program controlled              
inflation is allowed at the boundary of the chamber. 

  

                                           (a)                                               (b) 



 

(c) 
Figure 10: (a) Computational domain for the chamber, (b) Meshed Model (c) Local 
mesh refinement at top and bottom (shown at plane of symmetry).  

 
Deliverable (1)  
The line plot for Vout v/s time from t = 0 s to t = 5 s is shown in Fig. 11. As the                        
temperature of the air increases in the chamber it expands and as a result a               
continuous increase in the velocity (area weighted average) of the air, normal to the              
outlet, is observed. In the present simulation, the time step size is chosen as ∆t = 0.1                 
s. The number of time steps is kept as 50 to achieve the solution till t = 5 s. The                    
maximum iterations per time step is chosen as 50. The value of Vout is 0.018 (m/s) at  

t = 5 s. 

 

Figure 11: Line plot for Vout v/s  flow time  

Deliverable (2)  
The pressure contour, velocity magnitude contour, temperature contour and the 
density contour  are shown at the vertical plane of the symmetry at t = 5 s, in Fig. 12 



(a), (b) (c) and (d) respectively.  

 

(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 12: (a) Pressure Contour, (b) Velocity magnitude contour and (c) Temperature 
contour (d) density contour at the plane of symmetry.  



Deliverable (3)  
 
1. The fractional variation of density across the system is defined by the expression 

given below: 

Fractional Variation of density=    (𝜌𝑚𝑎𝑥  −  𝜌𝑚𝑖𝑛) / �̅�        (5) 

Where 𝜌𝑚𝑎𝑥 = maximum density, 𝜌𝑚𝑖𝑛  = minimum density, �̅�  = Average density.  

For the system in Task 3, the maximum and minimum density values after t =5 s can 
be expressed as  

𝜌𝑚𝑎𝑥 = 1.2042 kg/m3 , 𝜌𝑚𝑖𝑛  = 1.0407 kg/m3,  �̅�  = 1.18 kg/m3 

The final fractional variation of density as per equation 5 is 0.1383. (Task3).....(i) 
 
2. for Task1, as per the boussinesq approximation, the density can be estimated 

using equation 1 and the values are: 

𝜌𝑚𝑎𝑥 = 998.203 kg/m3 , 𝜌𝑚𝑖𝑛  = 985.603 kg/m3,  �̅�  = 993.1449 kg/m3 

The final fractional variation of density as per equation 5 is 0.01268. (Task1)... (ii) 
 
3. Again for Task1, using thermal expansion coefficient beta,  

β = 0.00036621, Temperature difference= 55-20= 35 degree celsius 

Fractional variation of density= 0.0128 (close to the task1 value)  

 

Comparing (i) and (ii), the task 3 value is higher than task 1 because task3 uses ideal 

gas with a volumetric expansion where density varies with temperature. On the other 

hand, for Task 1, the fluid considered as was water with variation of density with 

temperature and buoyancy effect included. For task 1 , the density is not a string 

function of temperature. Therefore, the fractional density is lower in task1 when 

compared to task 3. 
 
 
 
 
 
 
 



Task 4  

To perform the task 3 invoking the concept of symmetry in 2 planes.  

Solution  
Deliverable (3)  
Figure 13 (a) shows the computational domain of the quarter chamber and Fig. 13 (b)               
shows the local mesh refinement at the symmetry used in the present simulation.  

 
(a) 

 
(b) 

Figure 13: (a) Computational domain for the quarter chamber, (b) meshed surface at             
the symmetry with local mesh refinement 
 
Deliverable (1)  
The line plot for Vout m/s time from t = 0 s to t = 5 s is shown in Fig. 14. As the                        
temperature of the air increases in the chamber it expands and as a result a               
continuous increase in the velocity (area weighted average) of the air, normal to the              
outlet, is observed. The setup remains the same as the above task 3. The value of                
Vout is 0.016848 (m/s) at t = 5 s. 

  

 



 

Figure 14: Line plot for Vout v/s flow time t from t = 0 s to t = 5 s.  

Deliverable (2)  
The velocity magnitude contour and the temperature contour are shown at the plane             
of the symmetry at t = 5 s, in Fig. 15 (a) and (b) respectively. It is discernible that the                    
results obtained in the present simulation over a quarter domain do corroborate with             
that obtained in task 3. However, there are very minor discrepancies in the result              
which are caused mainly due to difference between the grid generated in original             
computational domain and the grid generated in the quarter domain, and in addition             
to that, also due to some numerical error.  

 

 

(a) 



 

(b) 

Figure 15: (a) Velocity magnitude contour and (b) Temperature contour at the plane             
of symmetry.  

Deliverable (4) 
A brief discussion to compare Task 4 and Task 3. Are the results the same? What are                 
the savings by adopting the two-fold symmetry, in terms of number of elements and              
computational time? 

                   

              Complete Model Task3                                  Quarter model- Task 4 

Figure 16: Complete model and two-fold symmetry model 

Comparing Task 3 and Task 4 results are approximately the same with a variation of               
5-10%. In Task 4, the symmetric model is used to evaluate the same results under               
boundary conditions. The symmetric model is a quarter of the full model results in              
reduction of number of elements and nodes significantly as shown below. 

 

     Table 2: Number of Nodes and elements for Complete and Quarter model 

It can be seen through Table 2 that for the quarter model the nodes and elements are 

 Nodes elements 

Complete Model 13725 42891 

Quarter Model 4217 13215 



almost reduced to one fourth of the initial model. The computational equations are 
solved at the elements and nodes to produce the required results. It can be 
concluded that higher the number of elements and nodes, the more will be the 
number of equations points to be solved in CFD. Therefore, the quarter model takes 
about one fourth of the computational time taken by complete model as shown below: 

  

 

                                                          

          Quarter Model Task3                                         Complete model- Task 4 

Figure 17: Computational time for both models 

 

The time saved is almost 280 s i.e 69% of the total time taken by the complete model. 
Hence, the symmetry saves a significant time in solving the huge models and 
requires less expenditure in industries where minute percentage errors are 
acceptable. 

 

 

 


