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Task 1(a) 

In this task, a cylindrical water heater prototype was modeled, and fluid flow simulation was 

performed inside the heater to analyze the heat transfer. As shown in Figure 1, the geometry of the 

model consists of a main cylindrical tank of diameter D = 0.6 m and height H = 0.8 m, and two 

cylindrical inlet and outlet side pipes of diameter d = 0.06 m and length L = 0.15 m. The locations 

of the inlet and outlet side pipes from the bottom surface are Z1 = 0.6 m and Z2 = 0.2 m respectively. 

After modeling the geometry, the mesh was generated with an element size of 2.3 cm and selecting 

the inflation setting to program controlled. The choice of the element size for the mesh was a bit 

higher to accommodate room for mesh refinement at the bottom region of the main cylinder. In 

this problem, all the surfaces of the system are thermally insulated except the temperature of the 

bottom plate of the main cylinder was set to a constant value of T = 55oC. The inlet velocity was 

set to a constant, vin = 0.06 m/s and the inlet temperature was set to a constant, Tin = 20oC.  

 
Figure 1. Prototype Water Heater Model 

The pressure-based solver was utilized and the gravitational constant in Task 1(a) was considered 

as g = 9.81 m/s2 in the negative y direction. The Boussinesq approximation was applied to the 

density in order to allow the variation of density with temperature along with the full buoyancy 

effect selected under the standard k-epsilon turbulence model. The operating temperature, To, for 

the simulation was considered as the average of maximum and minimum values of the temperature 

in the system, which is computed in Eq. 1: 

 
𝑇𝑜 =  

𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
=

55 𝑜C + 20 𝑜C

2
= 37.5 𝑜C = 310.65 K 

(1) 

 



The operating density was evaluated based on the formula obtained from the reference NIST paper 

at the operating temperature value as shown in Eq. 2 below: 

 𝜌𝑜 =  999.85308 + 6.32693 × 10−2𝑇𝑜 − 8.523829 × 10−3𝑇𝑜
2

+  6.943248 × 10−5𝑇𝑜
3 − 3.821216 × 10−7𝑇𝑜

4  

= 993.1448623 
𝑘𝑔

𝑚3
 

(2) 

 

The thermal expansions coefficient for the system was calculated using Eq. 3: 

 
𝛽 =  −

1

𝜌𝑜
(

𝑑𝜌

𝑑𝑇
)

𝑇𝑜

= 0.00036621 
1

𝐾
 

(3) 

 

Deliverable (i) 

The contour plot of the y-velocity in the plane of symmetry for the steady solution is shown in 

Figure 2. From the figure, it is evident that the minimum y-velocity is -0.0453 m/s and the 

maximum y-velocity is 0.0640 m/s. Initially the water enters the inlet pipe and starts to fall 

downward due to gravity with a negative y-velocity. Later, the water encounters the bottom surface 

and flows in the x direction. As the water reaches the boundary, it shifts upward with a positive y-

velocity and the maximum y-velocity is observed as the water approaches the outlet pipe. 

 

Figure 2. Contour Plot of Y-Velocity in the Plane of Symmetry 



Deliverable (ii) 

The contour plot of temperature in the plane of symmetry for the steady solution is shown in Figure 

3. To clearly highlight the “cool waterfall” coming down from the inlet, the contour interval range 

of temperatures was manually adjusted between 293 K and 300 K.  

 

Figure 3. Contour Plot of Temperature in the Plane of Symmetry  

 

Deliverable (iii) 

The outlet temperature, Tout, is defined as the area-weighted average of static temperature at outlet 

as shown in Eq. 4: 

 
𝑇𝑜𝑢𝑡 =  

1

𝐴
∬𝑇 𝑑𝐴

𝐴

 
(4) 

 

The value of outlet temperature at the steady state was found to be 𝑻𝒐𝒖𝒕 = 𝟐𝟗𝟖. 𝟎𝟏 𝑲.  

This value was obtained after running a total of 1500 iterations. Figure 4 depicts the line plot of 

the outlet temperature, Tout, as a function of the number of iterations. The convergence criteria 

requirement for this task is said to be achieved when the variation of Tout is less than 0.1oC over 

the span of 100 iterations. This was observed between 1000 and 1100 iterations where the 



temperature difference achieved was 0.08 K. The simulation was, however, continued until 1500 

iterations to achieve the steady value.  

 

Figure 4. Line Plot of Outlet Temperature vs. Number of Iterations  

 

Deliverable (iv) 

A plot of the mesh along the plane of symmetry is shown in Figure 5. The mesh was automatically 

refined at the boundaries of the main cylinder and inside the inlet and outlet side pipes. Additional 

mesh refinement was done at the bottom of the main cylinder by defining a pancake region of inner 

cylinder with a height of 0.1 m and a diameter of 0.6 m.  

 

Figure 5. Plot of Mesh along the Plane of Symmetry  



Task 1(b) 

Task 1(a) was repeated with the same setup of simulation parameters except gravity was changed 

to g = -3.72 m/s2 (strength of gravity at the surface of Mars).  

 

Deliverable (i) 

The contour plot of the y-velocity in the plane of symmetry for the steady solution is shown in 

Figure 6. As observed from the plot, the minimum y-velocity is -0.0505 m/s while the maximum 

y-velocity is 0.0342 m/s. Unlike the case in Task 1(a), the fluid flow path is different in Task 1(b). 

The water initially enters the inlet and travels in the positive x direction until it encounters the wall. 

Next, the flow direction switches to negative y direction until it encounters the bottom surface 

while some of the water exits the outlet pipe. The water that hits the bottom surface swings back 

to the left until it hits the boundary and then moves up in the positive y direction.  

 

Figure 6. Contour Plot of Y-Velocity in the Plane of Symmetry  

 

 

 

 



Deliverable (ii) 

The contour plot of temperature in the plane of symmetry for the steady solution is shown in Figure 

7. Similar to Task 1(a), the contour interval range of temperatures was manually adjusted between 

293 K and 300 K to clearly highlight the “cool waterfall” feature coming from the inlet. 

 

Figure 7. Contour Plot of Temperature in the Plane of Symmetry  

 

Deliverable (iii) 

The value of outlet temperature at the steady state was found to be 𝑻𝒐𝒖𝒕 = 𝟐𝟗𝟔. 𝟑𝟏 𝑲.  

Figure 8 illustrates the line plot of the outlet temperature, Tout, as a function of the number of 

iterations. The convergence criteria requirement was observed between 900 and 1000 iterations 

where the temperature difference was 0.07 K. However, the simulation was continued to run until 

1500 iterations.  

 



 

Figure 8. Line Plot of Outlet Temperature vs. Number of Iterations  

 

Task 2 

Unlike the prototype water heater design used in Task 1, a more efficient coiled pipe design as 

shown in Figure 9 was considered in this Task to perform simulation. The helical pipe was 

generated with its center traced by the equation of a helical curve:  

 

 𝑋(𝑡) = 𝑅 cos (𝑡) (5) 

 

 𝑌(𝑡) = 𝑅 sin (𝑡) (6) 

 

 𝑍(𝑡) = 𝐶 𝑡 (7) 

 

The curve was traced from parameter t = 0 to t = 12 π (radian), with a radius R = 0.3 m and the 

parameter C = 0.15/(2 π) m. The cross section of the helical pipe is circular with a radius of 4 cm. 

For the inlet velocity, four different cases were set with vin = 0.01, 0.02, 0.04, and 0.08 m/s. The 

inlet temperature was set to Tin = 300 K for all four cases. A uniform heat flux of Q = 600 W/m2 

was applied on the wall of the helical pipe and the outlet condition was set to outflow. Pressure 

based solver was utilized with constant density setting for the water fluid circulated through the 

coiled pipe. Laminar model was selected for all simulations to achieve steady state solution. The 

mesh was generated with an element size of 1.2 cm and program controlled inflation setting.  

 



 

Figure 9. Coiled-Pipe Water Heater Model 

 

Deliverable (1) 

The values of temperature difference, ΔT = Tout – Tin, for 4 cases of inlet velocities are shown in 

Table 1. The numerical values in the table are associated with those obtained from the simulations 

performed in Fluent while the analytical values were obtained by performing a heat budget 

calculation on the helical pipe system.  

Eq. 8 shows the heat budget calculation for the helical water heater where cp = 4182 J/kg K is the 

specific capacity of water, ρ = 998.2 kg/m3 is the density of water, Q = 600 W/m2 is the uniform 

heat flux applied on the pipe, and t is the transit time of the water through the pipe. A is the surface 

area of the helical pipe and V is the total volume of the helical pipe given by Eq. 9 and Eq. 10 

respectively where r = 4 cm is the radius of cross section of helical pipe and L is the length of the 

helical pipe given by Eq. 11 defined using the parameters of helical curve, R and C stated 

previously. 

 𝑐𝑝 𝜌 𝑉 Δ𝑇 = 𝐴 𝑄 𝑡 (8) 

 

 𝐴 = 2𝜋r𝐿 (9) 

 

 𝑉 = 𝜋𝑟2𝐿  (10) 

 

 𝐿 =  √𝑅2 + 𝐶2 × 12π (11) 



In addition, the transit time of the water through the pipe can be alternately defined as shown in 

Eq. 12 where L is again the length of the helical pipe and vin is the inlet velocity normal to the cross 

section of the helical pipe. 

 
𝑡 =  

𝐿

𝑣𝑖𝑛
 

(12) 

 

Substituting Eq. 9-10, 12 in Eq. 8 and simplifying, the analytical temperature difference ΔT can 

be computed using Eq. 13 below: 

 
Δ𝑇 =  

2 𝑄 𝐿

𝑐𝑝 𝜌 𝑟 𝑣𝑖𝑛
 

(13) 

 

Vin (m/s) ΔT (K) Numerical ΔT (K) Analytical Error % 

0.01 8.76 8.19 6.96 

0.02 4.47 4.10 9.02 

0.04 2.28 2.05 11.22 

0.08 1.15 1.02 12.74 

Table 1. ΔT Values for Different Inlet Velocities 

Figure 10 is a line plot of the numerical temperature difference values, ΔT, obtained by performing 

simulations in Fluent for 4 different cases of velocities.  

 

Figure 10. Plot of ΔT vs. Inlet Velocity 



As observed from Figure 10, it can be discerned that the temperature difference, ΔT = Tout – Tin is 

inversely proportional to the inlet velocity, vin. This can also be easily verified by looking at the 

analytical expression derived for ΔT as a function of vin in Eq. 13 above. The reason behind this 

phenomenon is due to the fact that as the velocity of the water inside the pipe increases, the 

residence time decreases and the fluid does not gain enough heat from the external heat flux applied 

on the boundary, leading to a lower outlet temperature, Tout and a lower temperature difference, 

ΔT for a constant inlet temperature, Tin. 

 

Deliverable (2) 

The contour plots of temperature and velocity magnitude over the circular opening of outlet for 

the case with inlet velocity, vin = 0.08 m/s are shown in Figures 11 and 12 respectively. As observed 

from Figure 11, the temperature at the outer edge is lower when compared to the inner edge. This 

can be primarily attributed to the trend of velocity magnitude at the outer and inner edges as can 

be seen in Figure 12, where the velocity at the outer edge is higher than the velocity at the inner 

edge due to the centrifugal force on the fluid as it passes through a circular path. The low velocity 

water at the inner edge has more residence time to gain heat from the boundary, leading to a higher 

temperature as explained previously.  

 

Figure 11. Contour Plot of Temperature over Outlet Surface 



 

Figure 12. Contour Plot of Velocity Magnitude over Outlet Surface 

 

Task 3 

In this task, transient simulation is performed with air as the working fluid inside the cylindrical 

chamber system shown in Figure 13. The main cylinder has a height of 15 cm and diameter of 30 

cm, while the cylindrical side pipe has a length of 10 cm and a diameter of 5 cm located at the 

midplane of the main cylinder. After modeling the geometry, the mesh was generated with an 

element size of 1 cm. Additional mesh refinement was done by defining pancake regions of 3 cm 

diameter cylinders at the top and bottom portions of the main cylinder as shown in Figure 14. Since 

the effect of volumetric expansion is important for this case, density-based solver with ideal gas 

density variation setting and laminar flow is used for performing simulations. A uniform energy 

input of 100 W/m2 was applied at the top and bottom plates of the main cylinder. The outlet 

velocity, Vout, is defined as the area-weighted average of velocity at outlet as shown in Eq. 14: 

 
𝑉𝑜𝑢𝑡 =  

1

𝐴
∬ 𝑣 𝑑𝐴

𝐴

 
(14) 

where v is the outward velocity in the normal direction to the opening of the side pipe, and A is the 

surface area of the opening.  



 

Figure 13. Heater Chamber Model 

 

 

Figure 14. Plot of Mesh along the Plane of Symmetry  

Deliverable (i) 

The line plot of Vout vs. time from t = 0 to t = 5 seconds is shown in Figure 15. In this transient 

simulation run, the time step size was chosen as Δt = 0.1 s. Initially a trial run was done for larger 

time step sizes starting from 1 s to 0.5 s. However, these simulations did not result in a smooth 

enough plot for Vout vs. time. Therefore, the time step size of 0.1 s was deemed to be appropriate 

for the purpose of this simulation as it resulted in a smooth curve shown in the below figure. The 

number of time steps was set to 50 in order to achieve the solution until t = 5 s. The maximum 

iterations per time step was selected as 50 to allow a total of 2500 maximum number of iterations 

for the entire simulation run. The outlet velocity after t = 5 s was found to be Vout = 0.017 m/s. 

 



 

Figure 15. Line Plot of Outlet Velocity vs. Number of Iterations  

 

Deliverable (ii) 

The contour plots of pressure, temperature, density, and velocity component in the direction 

parallel to the side pipe, on the vertical plane of symmetry are shown in Figures 16, 17, 18, and 19 

respectively. Since the air inside the cylindrical chamber is assumed to follow the ideal gas 

equation, the contour plots shown below are consistent with the ideal gas behavior. As the uniform 

heat flux is applied at the top and bottom plates, a higher temperature is observed near the end 

plates and a gradual decrease in temperature towards the center. Since the density follows an 

inverse relationship with temperature for an ideal gas, the density of the air is higher at the top and 

bottom plates while lower in other areas of the chamber. As the air undergoes volumetric 

expansion, the pressure increases inside the chamber with a gradually decreasing pressure towards 

the outlet. This pressure gradient allows the air to flow outside through the outlet which is 

consistent with the high velocity achieved towards the outer pipe region as shown in Figure 19. 

 

Figure 16. Contour Plot of Pressure on the Vertical Plane of Symmetry 



 

 

Figure 17. Contour Plot of Temperature on the Vertical Plane of Symmetry 

 

 

Figure 18. Contour Plot of Density on the Vertical Plane of Symmetry 

 

 

Figure 19. Contour Plot of Velocity on the Vertical Plane of Symmetry 



Deliverable (iii) 

The fractional variation of density across the system is defined by the expression given in Eq. 15: 

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛

𝜌
 (15) 

where 𝜌𝑚𝑎𝑥 and 𝜌𝑚𝑖𝑛 are the maximum and minimum densities in the domain while 𝜌 is the 

density averaged over the whole domain. For the system in Task 3, the maximum and minimum 

density values after t = 5 s can be inferred from the contour plot of density shown in Figure 16. 

The 𝜌 was approximated by evaluating the volume average density over the entire domain during 

the simulation. Using the values of 𝜌𝑚𝑎𝑥 = 1.2042 kg/m3, 𝜌𝑚𝑖𝑛 = 1.0383 kg/m3, and 𝜌 = 1.1821 

kg/m3, the fractional variation of density at t = 5 s for the system in Task 3 is computed to be 

0.1403. 

To compare this quantity with its counterpart in Task 1, the fractional variation of density was 

estimated for the system in Task 1. Since the Boussinesq approximation was utilized in Task 1, 

the density can be estimated as a function of temperature. Substituting Tmin = 20oC and Tmax = 55oC 

in place of To in Eq. 2, the maximum and minimum densities in the domain are estimated to be 

𝜌𝑚𝑎𝑥 = 998.2032 kg/m3 and 𝜌𝑚𝑖𝑛 = 985.6035 kg/m3. Similar to the case in Task 3, 𝜌 was 

approximated by evaluating the volume average density over the entire domain during the 

simulation for Task 1, 𝜌 = 993.1449 kg/m3, which was the same value as operating density. Using 

these values, the fractional variation of density for the system in Task 1 was approximated to be 

0.0127. Alternately, the fractional variation of density for Task 1 can also be estimated by 

multiplying the thermal expansion coefficient 𝛽 computed in Eq. 3 with the total temperature 

difference, ΔT = Tmax – Tmin = 35oC. The fractional variation found using this alternate method is 

0.0128, which is very close to the value computed previously.  

In comparison of the fractional variation of density across the systems in Task 1 and 3, the value 

obtained in Task 3 is much higher than that of Task 1. The main reason behind this is the fluid in 

system for Task 3 is considered as air following an ideal gas behavior with a volumetric expansion, 

where the density is a strong function of temperature. However, for the system of Task 1, the fluid 

considered for analysis was water, allowing the variation of density with temperature and the effect 

of buoyancy. In this case, the density is not a strong function of temperature, as it is evident from 

Eq. 2. Therefore, the fractional variation of density is found to be much lower in the case of Task 

1 when compared to the system in Task 3.  

 

 

 

 

 

 



Task 4 

For this task, the same setup of simulation parameters used in Task 3 was repeated except running 

the simulation on only a quarter of the original geometry as shown in Figure 20, by invoking two-

fold symmetry using two planes of symmetry. In this case, the ‘top left’ quarter geometry is utilized 

in performing the same simulation as Task 3. The mesh was also generated with an element size 

of 1 cm and adapting additional mesh refinement near the top region of the geometry as previously 

done in Task 3.  

 

 

Figure 20. Quarter Geometry of Heater Chamber Model 

 

Deliverable (i) 

The line plot of Vout vs. time from t = 0 to t = 5 seconds is shown in Figure 21. Similar to Task 3, 

the time step size for this task was chosen as Δt = 0.1 s. The number of time steps was set to 50 in 

order to achieve the solution until t = 5 s. The maximum iterations per time step was selected as 

50 to allow a total of 2500 maximum number of iterations for the entire simulation run. The outlet 

velocity after t = 5 s was found to be Vout = 0.015 m/s. This result is in good agreement with the 

value of Vout = 0.017 m/s obtained in Task 3 for the full geometry model.  

 

 

 

 



 

 

Figure 21. Line Plot of Outlet Velocity vs. Number of Iterations  

 

Deliverable (ii) 

The contour plots of temperature and velocity component in the direction parallel to the side pipe 

on the vertical plane of symmetry are shown in Figures 22 and 23 respectively.  

 

 

Figure 22. Contour Plot of Temperature on the Vertical Plane of Symmetry for Quarter Model 

 



 

Figure 23. Contour Plot of Velocity on the Vertical Plane of Symmetry for Quarter Model 

 

Deliverable (iii) 

Figure 24 shows the plot of the mesh for the quarter geometry and Figure 25 shows the plot of the 

mesh along the plane of symmetry. 

 

 

Figure 24. Plot of Mesh for Quarter Model 



 

 

Figure 25. Plot of Mesh along the Plane of Symmetry for Quarter Model 

 

Deliverable (iv) 

Comparing the results obtained in Task 4 and Task 3, it can be discerned that there are minor 

discrepancies between the values from the two tasks. The value of Vout obtained in Task 3 was 

0.017 m/s considering the full geometry while the value of Vout in Task 4 was 0.015 m/s for a 

quarter of the full geometry, translating to approximately 11% error between the two values. 

Similarly, the error between the maximum temperature on the vertical plane of symmetry in Task 

3 and 4 is around 5% and the error between the maximum value of x-velocity on the plane of 

symmetry is found to be approximately 10%.  

Table 2 summarizes the savings attained by adopting the two-fold symmetry in terms of the 

number of elements and computational time between the two models. 

 

Variable Full Model Quarter Model % Reduction 

Number of Elements 64,012 20,851 67 % 

Computational Time 1733.35 seconds 535.82 seconds 69 % 

Table 2. Comparison of Elements and Computational Time between Full and Quarter Models  

It is evident from the above table that there is a significant savings in both the number of elements 

and the computational time by employing the quarter model using the two-fold symmetry. It can 

also be deduced that the computational time is proportional to the number of elements as the CFD 

software must solve a proportional number of equations at each node of the computational domain. 

This philosophy is very useful in larger industries as the computational time becomes very 

expensive. If the error percentage between the full and reduced geometries, say for example 5 %, 

is deemed to be acceptable, then it is recommended to go for a reduced geometry model for analysis 

as the savings achieved in computational time outweighs the small error between the two models.  

 


