MAE 560 - Applied Computational Fluid Dynamics

Project 2

Sean Haynie

November 12, 2021

Dr. H.P. Huang

Name of Collaborator: Danielle Seddon	
Task(s), specific detail	Contribution or collaborative effort
Task 4	Worked on MATLAB code together

Task 1

Task 1a: Three boundaries set to pressure outlet

This task simulates the leaking of natural gas from an underground vault into open air, in a pure 2-D setting. This simulation has the lateral and top boundaries set to pressure outlets with zero gauge pressure and open to air. A transient solution to $t=5 \mathrm{~s}$ was performed and the results are included below.

Figure 1-1: Plot of the mesh used in Task 1a

Deliverable (D1)

Figure 1-2: Contour plot of the volume fraction of methane at $t=5 \mathrm{~s}$

Ansys
STUDENT

Figure 1-3: Contour plot of the y-velocity at $t=5 \mathrm{~s}$

Figure 1-4: Contour plot of the static pressure at $t=5 \mathrm{~s}$

Task 1b: Left boundary set to velocity inlet

This task uses the same settings as the previous one, however the left boundary wall is set to a velocity inlet with the x-velocity profile given by $u=0.8 y-0.032 y^{2}$. The transient solution was performed to $t=5 \mathrm{~s}$ and the results are included below.

Figure 1-5: Plot of the mesh used in Task $1 b$

Deliverable (D2)

Figure 1-6: Contour plot of the volume fraction of methane at $t=5 \mathrm{~s}$

Deliverable (D3)

The mesh resolution parameters and time step size used for both Tasks 1a and 1 b are included in the table below.

Table 1: Mesh resolution parameters and time step setup for Tasks la and $1 b$

Element Size (\mathbf{m})	Number of Elements	Time Step Size (\mathbf{s})	Number of Time Steps	Max Iterations/Time Step
0.15	67,813	0.01	500	10

Task 2

This task simulates the process of a falling water droplet impacting on a flat water surface, in a pure 2-D setting. A $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ square bucket is open to air at the top with zero gauge pressure, with the other three sides being walls, and is filled with water up to 15 cm . A circular droplet with a diameter of 6 cm is placed in the middle of the bucket, with its center placed 40 cm above the floor, and will begin to fall at $\mathrm{t}>0$. A laminar model is used, and the transient solution is performed to $t=0.3 \mathrm{~s}$. The results of this simulation are included below.

Figure 2-1: Plot of the mesh used in Task 2

Deliverable (D5)

The mesh resolution parameters and time step size used for Task 2 are included in the table below.

Table 2: Mesh resolution parameters and time step setup for Task 2

Element Size $(\mathbf{c m})$	Number of Elements	Time Step Size (\mathbf{s})	Number of Time Steps	Max Iterations/Time Step
0.25	40,000	0.001	300	10

Deliverable (D4)
contour-water Volume fraction (phase..

Ansys
$\frac{2021 ~ R 2}{\text { STUDENT }}$

Figure 2-2: Contour plot of the volume fraction of water at $t=0 \mathrm{~s}$

Ansys
2021R2
STUDENT
contour-water
Volume fraction
Volume fraction (phase
$\square 1.00 \mathrm{e}+00$
$-8.00 \mathrm{e}-01$
-7.00e-01
$6.00 \mathrm{e}-01$
$5.00 \mathrm{e}-01$
$4.00 \mathrm{e}-01$
$3.00 \mathrm{e}-01$
$2.00 \mathrm{e}-01$
$1.00 \mathrm{e}-01$
$0.00 \mathrm{e}+00$

Mnsys

Figure 2-3: Contour plot of the volume fraction of water at $t=0.2 \mathrm{~s}$

Ansys
2021 R2
STUDENT

Figure 2-4: Contour plot of the volume fraction of water at $t=0.25 \mathrm{~s}$
contour-water Volume fraction (phase.

Ansys
2021 R2
Student

Figure 2-5: Contour plot of the volume fraction of water at $t=0.3 \mathrm{~s}$

Task 3

This task simulates a droplet of engine oil sliding down a 45 degree incline surface. A rectangular domain was created, with the bottom plate being set to a wall and the others being open to air. The details and results of this simulation are shown below.

Deliverable (D6)

The computational domain for this simulation is a $6 \mathrm{~cm} \times 12 \mathrm{~cm} \times 2 \mathrm{~cm}$ rectangle. The bottom plate was set to a wall, and the other boundary conditions were set to a pressure outlet with zero gauge pressure and backflow set to air. The mesh resolution parameters and time step size used for Task 3 are included in the table below.

Table 3: Mesh resolution parameters and time step setup for Task 3

Element Size $(\mathbf{c m})$	Number of Elements	Time Step Size (\mathbf{s})	Number of Time Steps	Max Iterations/Time Step
0.10	120,000	0.0002	500	10

Deliverable (D7)

Figure 3-1: 3-D shape of the blob of engine oil at $t=0 \mathrm{~s}$
contour-vf
Volume fraction (phase..

\quad| $1.00 \mathrm{e}+00$ |
| :--- |
| $9.00 \mathrm{e}-01$ |
| $8.00 \mathrm{e}-01$ |
| $7.00 \mathrm{e}-01$ |
| $6.00 \mathrm{e}-01$ |
| $5.00 \mathrm{e}-01$ |
| $4.00 \mathrm{e}-01$ |
| $3.00 \mathrm{e}-01$ |
| $2.00 \mathrm{e}-01$ |
| $1.00 \mathrm{e}-01$ |
| $0.00 \mathrm{e}+00$ |

contour-vt
Volume fraction (phase.
$9.00 \mathrm{e}-01$
$8.00 \mathrm{e}-01$
$7.00 \mathrm{e}-01$
6.00e-01
$5.00 \mathrm{e}-01$
$4.00 \mathrm{e}-01$
$3.00 \mathrm{e}-01$
$2.00 \mathrm{e}-01$
$1.00 \mathrm{e}-01$
$0.00 e+00$

Figure 3-2: 3-D shape of the blob of engine oil at $t=0.05 \mathrm{~s}$
Ansys
2021 R 2
STUDENT

Figure 3-3: 3-D shape of the blob of engine oil at $t=0.1 \mathrm{~s}$

Deliverable (D8)

Abstract

Ansys $\frac{2021 \mathrm{R2}}{\text { STUDENT }}$ contour-center Volume fraction (phase $\left[\begin{array}{l}1.00 \mathrm{e}+00 \\ 9.00 \mathrm{e}-01 \\ 8.00 \mathrm{e}-01 \\ 7.00 \mathrm{e}-01 \\ 6.00 \mathrm{e}-01 \\ 5.00 \mathrm{e}-01 \\ 4.00 \mathrm{e}-01 \\ 3.00 \mathrm{e}-01 \\ 2.00 \mathrm{e}-01 \\ 1.00 \mathrm{e}-01 \\ 0.00 \mathrm{e}+00\end{array}\right.$ $3.00 \mathrm{e}-01$ $1.00 \mathrm{e}-01$ $0.00 \mathrm{e}+00$

Figure 3-4: Contour plot of the volume fraction of engine oil at $t=0 \mathrm{~s}$

Ansys
2021 R2
STUDENT

Figure 3-5: Contour plot of the volume fraction of engine oil at $t=0.05 \mathrm{~s}$

Figure 3-6: Contour plot of the volume fraction of engine oil at $t=0.1 \mathrm{~s}$

Task 4

This task simulates the flow in a U-shaped 3-D pipe with a circular cross section. Water is filled in the pipe so that the left side is 5 cm from the top opening and the right side is 15 cm from its respective opening in the top. Air is filled in the pipe above these openings. A laminar model is used, and the transient solution is performed to $t=1.25 \mathrm{~s}$. The simulation was performed using a half-pipe geometry by invoking symmetry and the results are included below.

Figure 4-1: Contour plot of the volume fraction of water at $t=0 \mathrm{~s}$

Deliverable (D9)

The top two openings were set to pressure outlets with backflow volume fraction of water set to 0 to allow Fluent to properly simulate the oscillation.

Table 4: Mesh resolution parameters and time step setup for Task 4

Element Size $(\mathbf{c m})$	Number of Elements	Time Step Size (s)	Number of Time Steps	Max Iterations/Time Step
0.35	84,732	0.005	250	10

Deliverable (D10)

Figure 4-2: Plot of h (the water level in the left leg relative to the equilibrium level) as a function of time

From the figure above, the period of oscillation for this simulation is around 1.028 s , and therefore the time when the water levels of the left and right legs first become equal is around 0.257 s .

Deliverable (D11)

Figure 4-3: Contour plot of the x-velocity on the plane of symmetry at $t=0.257 \mathrm{~s}$

Figure 4-4: Contour plot of the y-velocity on the plane of symmetry at $t=0.257 \mathrm{~s}$
From the contour plots shown above, it is evident that the maximum x-velocity is occurring at the innermost edge of the pipe, and the water is currently flowing from the left side of the pipe to the right side.

