Project \#2: Multiphase flow; Flow with interface MAE 560 Daniel Luna Rubio

Statement of collaboration

I declare that I had "No collaboration" with any student of the class of MAE 560: Applied Computational Fluid Dynamics for solving Project \#2.

Task 1

Task 1a:
(D1)

Figure D1.1: Contour plot of the volume fraction of methane at $t=3 \mathrm{~s}$

Figure D1.2: Contour plot of the volume fraction of methane at $t=6 \mathrm{~s}$

Task 1b:
(D2)

Figure D2: Contour plot of the volume fraction of methane at $t=6 \mathrm{~s}$
(D3)
Geometry and mesh resolution:

Figure D3: Mesh resolution plot

Mesh specifications:

- Element size $=15 \mathbf{~ c m}$
- Nodes $=81629$
- Elements $=\mathbf{8 0 9 9 7}$

Run calculations parameters:

- Time step size $=\mathbf{0 . 0 1} \boldsymbol{s}$
- Maximum number of iterations per time step $=\mathbf{2 0}$

Task 2

(D4)
Geometry and mesh resolution:

Ansys STUDENT

Figure D4: Mesh resolution plot

Mesh specifications:

- Element size $=\mathbf{0 . 1} \mathbf{~ c m}$
- Nodes = 63001
- Elements $=\mathbf{6 2 5 0 0}$

Run calculations parameters:

- Time step size $=\mathbf{0 . 0 0 0 4} \boldsymbol{s}$
- Maximum number of iterations per time step $=\mathbf{1 0}$
(D5)

contour-1
cf (mixture)

Ansys 2022 R2 STUDENT

Figure D5.2: Contour plot of custom field function "CF" at $t=0.16 \mathrm{~s}$

Figure D5.3: Contour plot of custom field function "CF" at $t=0.2 \mathrm{~s}$

Ansys STUDENT

Task 3

(D6)
Computational domain $=20 X 10 X 5 \mathrm{~cm}$

Figure D6.1: Computational domain
Boundary conditions:

- All the walls out of bottom face are set as pressure-outlet with gauge pressure of $\mathbf{0} \mathbf{P a}$.
- Gravitational acceleration values:

$$
X\left[m^{2} / s^{2}\right]=\left(9.81 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)(\sin 30)=4.905 \boldsymbol{m}^{2} / \boldsymbol{s}^{2} \quad Y\left[\mathrm{~m}^{2} / \mathrm{s}^{2}\right]=\left(-9.81 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)(\cos 30)=-\mathbf{8 . 4 9 6} \boldsymbol{m}^{2} / \boldsymbol{s}^{2}
$$

Geometry and mesh resolution:

Figure D6.2: Mesh resolution plot

Mesh adaption region:

Shape: Hex
Input coordinates:

$X \operatorname{Min}[m]$	$=\mathbf{0} .03$		$X \operatorname{Max}[m]=\mathbf{0 . 1 8}$
$Y \operatorname{Min}[m]=\mathbf{0}$		$Y \operatorname{Max}[m]=\mathbf{0 . 0 3}$	
$Z \operatorname{Min}[m]=\mathbf{0}$		$Z \operatorname{Max}[m]=\mathbf{0} . \mathbf{1}$	

Figure D6.3: Mesh adaption plot

Mesh specifications:

- Element size = 0.2 cm
- Nodes $=133926$
- Elements $=\mathbf{1 2 5 0 0 0}$

Run calculations parameters:

- Time step size $=\mathbf{0 . 0 0 0 5} \boldsymbol{s}$
- Maximum number of iterations per time step $=15$
(D7)
cont our-1
 STUDENT

Figure D7.1: Isometric view contour plot of 3-D glycerin blob at $t=0 \mathrm{~s}$
contour-1
Volume fraction (phase.
$\left[\begin{array}{l}1.00 \mathrm{e}+00 \\ 9.00 \mathrm{e}-01 \\ 8.00 \mathrm{e}-01 \\ 7.00 \mathrm{e}-01 \\ 6.00 \mathrm{e}-01 \\ 5.00 \mathrm{e}-01 \\ 4.00 \mathrm{e}-01 \\ 3.00 \mathrm{e}-01 \\ 2.00 \mathrm{e}-01 \\ 1.00 \mathrm{e}-01 \\ 0.00 \mathrm{e}+00\end{array}\right.$

Figure D7.2: Isometric view contour plot of 3-D glycerin blob at $t=0.08 \mathrm{~s}$

cont our-1
Volume fraction (phase..

Ansys 2022 RT STUDENT

Figure D7.3: Isometric view contour plot of 3-D glycerin blob at $t=0.2 \mathrm{~s}$
(D8)

Figure D8.1: Plane of symmetry contour plot of glycerin volume fraction at $t=0 \mathrm{~s}$
cont our-2
Volume fraction (phase..
$\square 1.00 \mathrm{e}+00$
$9.00 \mathrm{e}-01$
$8.00 \mathrm{e}-01$
$7.00 e-01$
$6.00 \mathrm{e}-01$
$5.00 \mathrm{e}-01$
$4.00 \mathrm{e}-01$
$3.00 \mathrm{e}-01$
$2.00 \mathrm{e}-01$

$1.00 \mathrm{e}-01$
$0.00 e+00$
Figure D8.2: Plane of symmetry contour plot of glycerin volume fraction at $t=0.08 \mathrm{~s}$

Figure D8.3: Plane of symmetry contour plot of glycerin volume fraction at $t=0.2 \mathrm{~s}$

Task 4

(D9)
Boundary conditions:

- Top and bottom openings are set as pressure-outlet with gauge pressure of $\mathbf{0} \mathbf{P a}$.
- Gravitational acceleration values:

$$
Z\left[\mathrm{~m}^{2} / \mathrm{s}^{2}\right]=-9.81 \boldsymbol{m}^{2} / \boldsymbol{s}^{2}
$$

Geometry and mesh resolution:

Ansys STUDENT

Figure D9: Mesh resolution plot

Mesh specifications:

- Element size $=\mathbf{0 . 8} \mathbf{~ c m}$
- Nodes = 39870
- Elements $=206101$

Run calculations parameters:

- Time step size $=\mathbf{0 . 1} \boldsymbol{s}$
- Maximum number of iterations per time step $=\mathbf{1 0}$

Note: Previous parameters are set for both case A and B.

Case A:
Performing the transient simulation on the system, the time $\boldsymbol{t}_{\boldsymbol{A}}$, at which half of the water is drained is approximately 7.9 s .

Case B:

Performing the transient simulation on the system, the time $\boldsymbol{t}_{\boldsymbol{B}}$, at which half of the engine oil is drained is approximately $\mathbf{1 2 . 1} \mathrm{s}$. Therefore, water will drain faster since $\boldsymbol{t}_{\boldsymbol{A}}<\boldsymbol{t}_{\boldsymbol{B}}$.

Note: Time values for both cases were extracted from report data file.
(D11)

Ansys STUDENT

Figure D11: Velocity vectors on horizontal plane located 15 cm below top basin for case B at t_{B}

