Arizona State University MAE 560: Applied Computational Fluid Dynamics Fall 2022

Project 3

Report

Name: Malhar Narendra Sonaniskar

Statement of Collaboration: No Collaboration

Task 1: Von-Karmann Vortex Street. Flow over Cylinder (Laminar and Transient)

D1: Description of mesh resolution, time step size, and maximum number of iterations per time.

Mesh resolution: 2e-3 m | Time step size: 0.05s | Iterations per time step: 10

Reynolds Number Calculation:

The values of density and dynamic viscosity were determined from the fluent database.

$$Re = \frac{\rho v D}{\mu} = \frac{730 \left[\frac{\text{kg}}{m^3}\right] * 0.04 \left[\frac{m}{s}\right] * 0.04 \left[m\right]}{0.0024 \left[\frac{\text{kg}}{m^*s}\right]} = 486.67$$

D2: Contour plots of *y-velocity*, stream function, and vorticity magnitude at t = 1 min

Figure 1: Y-Velocity at t = 1min for Task 1

Figure 2: Streamline function at t = 1 min for Task 1

Figure 3: Vorticity Magnitude at t = 1min for Task 1

Figure 4: Geometry and Mesh representation for Run1 - Vertical Ellipse

Figure 5: Geometry and Mesh representation for Run 2 - Horizontal Ellipse

D3: Plot of the *lift force v/s time* for all three cases

Figure 6: Lift Force v/s flow time plot from t=0 to t=1 min for Task 1 – Circular Cylinder

Figure 7:Lift Force v/s flow time plot from t=0 to t=1 min for Run 1 - Vertical Ellipse

Figure 8: Lift Force v/s flow time plot from t=0 to t=1 min for Run 2 - Horizontal Ellipse

D4: Amplitude and period of oscillation for circular cylinder, Run 1 (ellipse with major axis along y-axis) and Run 2 (ellipse with major axis along x-axis)

	Amplitude (in Newton)	Period (in second)
Circular	0.02719 N	4.35 s
Elliptical cylinder, Run 1	0.0453475 N	4.85 s
Elliptical cylinder, Run 2	0.0071735 N	3.55 s

Table 1: Amplitude and Period of oscillation for Task 1 all conditions

Task 2: Lift and Drag forces on Flying Saucer at 10km altitude.

D5: A plot of the mesh along the plane of symmetry for the case with $\theta = 25^{\circ}$ and *Mesh Size* Mesh Size: 4e-2 m

Figure 9: Plot of mesh along the plane of symmetry with Flying Saucer at 25° inclination

D6: Contour plots of x-velocity on the plane of symmetry for the three cases with $\theta = 0^{\circ}$, 25°, and 50°.

Figure 10: Contour plot of x-velocity at $\vartheta = 0^{\circ}$

Figure 11: Contour plot of x-velocity at ϑ = 25°

Figure 12: Contour plot of x-velocity at ϑ = 50°

D7: Values of lift force and drag force (that fluid exerts on the flying saucer) as a function of the tilt angle.

With Standard initialization:

	Lift force (in Newton)	Drag force (in Newton)
$\theta = 0^{\circ}$	12.68314 N	8.179693 N
$\theta = 25^{\circ}$	122.05 N	40.03 N
$\theta = 50^{\circ}$	80.60215 N	129.8938 N

 Table 2: Lift and Drag Force as function of tilt angle for Task 2
 Image

Task 3: 3D Air flow passing over a pentagon-shaped building

D8: Contour Plots of y-velocity at z = 2.5m and at plane of symmetry

For Run 1

Figure 13: Contour plot of y-velocity along z-plane at 2.5m for Task 3 (Run 1)

Figure 14: Contour plot of y-velocity along plane of symmetry for Task 3 (Run 1)

Description: From the above contours, it is observed that the wake formation (shadow region) has a velocity in the negative direction. Additionally, as we go above the pentagon building, the effect of building on the air flow (wind velocity) is reducing to a point that at the highest layers are practically at the same velocity i.e., ≈ 49.6 m/s.

Figure 15: Contour plot of y-velocity along z-plane at 2.5m for Task 3 (Run 2)

Figure 16: Contour plot of y-velocity along plane of symmetry for Task 3 (Run 2)

D9: Values of total drag force and individual pressure and viscous term

	Total drag (N)	Pressure term of drag (N)	Viscous term of drag (N)
Run 1	363.95924	363.26703	0.69220895
Run 2	488.82443	488.48224	0.34219116

Table 4: Values of total drag force and individual pressure and viscous term for Task 3

Note: For *Run 2*, the inlet velocity is entered in the -y direction. Therefore, the higher velocity magnitude is observed in the negative range and the wake region has positive velocity, contrary to the contour of *Run 1*.

Task 4: Laminar flow over an asymmetric shape for 1 min

D10: Contour plot of the stream function at t = 1 min

Figure 17: Stream-function over an asymmetric shape at t = 1 min

D11: Plot of lift force vs. time

Figure 18: Plot of lift force v/s flow time for 1 min

Geometry: The overall width and height of the geometry is 4 cm. Comparable with the Task 1 circular geometry.

Description: With the above asymmetric geometry, it is evident that the *Lift Force* [N] is oscillating between ± 0.05 N which is relatively higher than the circular and vertical ellipse cross-section cylinder. The period is ≈ 6 sec.