Arizona State University MAE 560: Applied Computational Fluid Dynamics

Fall 2022

Project 3

Report

Name: Malhar Narendra Sonaniskar

Task 1: Von-Karmann Vortex Street. Flow over Cylinder (Laminar and Transient)
D1: Description of mesh resolution, time step size, and maximum number of iterations per time.
Mesh resolution: 2e-3 m | Time step size: $0.05 \mathrm{~s} \mid$ Iterations per time step: 10

Reynolds Number Calculation:

The values of density and dynamic viscosity were determined from the fluent database.
$R e=\frac{\rho v D}{\mu}=\frac{730\left[\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right] * 0.04\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right] * 0.04[\mathrm{~m}]}{0.0024\left[\frac{\mathrm{~kg}}{\mathrm{~m} * \mathrm{~s}}\right]}=486.67$

D2: Contour plots of \boldsymbol{y}-velocity, stream function, and vorticity magnitude at $\mathbf{t}=\mathbf{1} \mathbf{~ m i n}$

Figure 1: Y-Velocity at $t=1 \mathrm{~min}$ for Task 1

Figure 2: Streamline function at $t=1 \mathrm{~min}$ for Task 1

Figure 3: Vorticity Magnitude at $t=1$ min for Task 1

Figure 4: Geometry and Mesh representation for Run1 - Vertical Ellipse

D3: Plot of the lift force v / s time for all three cases

Figure 6: Lift Force v / s flow time plot from $t=0$ to $t=1$ min for Task 1 - Circular Cylinder

Figure 7:Lift Force v / s flow time plot from $t=0$ to $t=1$ min for Run 1 - Vertical Ellipse

Figure 8: Lift Force v / s flow time plot from $t=0$ to $t=1$ min for Run 2 - Horizontal Ellipse

D4: Amplitude and period of oscillation for circular cylinder, Run 1 (ellipse with major axis along y-axis) and Run 2 (ellipse with major axis along x-axis)

Table 1: Amplitude and Period of oscillation for Task 1 all conditions

	Amplitude (in Newton)	Period (in second)
Circular	0.02719 N	4.35 s
Elliptical cylinder, Run 1	0.0453475 N	4.85 s
Elliptical cylinder, Run 2	0.0071735 N	3.55 s

Task 2: Lift and Drag forces on Flying Saucer at 10km altitude.
D5: A plot of the mesh along the plane of symmetry for the case with $\boldsymbol{\theta}=\mathbf{2 5}{ }^{\circ}$ and Mesh Size Mesh Size: 4e-2 m

Figure 9: Plot of mesh along the plane of symmetry with Flying Saucer at 25° inclination
D6: Contour plots of x-velocity on the plane of symmetry for the three cases with $\boldsymbol{\theta}=\boldsymbol{0}^{\circ}, \mathbf{2 5}$, and $\mathbf{5 0 ^ { \circ }}$.

Figure 11: Contour plot of x-velocity at $\vartheta=25^{\circ}$

Figure 12: Contour plot of x-velocity at $\vartheta=50^{\circ}$

D7: Values of lift force and drag force (that fluid exerts on the flying saucer) as a function of the tilt angle.
With Standard initialization:

	Lift force (in Newton)	Drag force (in Newton)
$\theta=0^{\circ}$	12.68314 N	8.179693 N
$\theta=25^{\circ}$	122.05 N	40.03 N
$\theta=50^{\circ}$	80.60215 N	129.8938 N

Table 2: Lift and Drag Force as function of tilt angle for Task 2

Task 3: 3D Air flow passing over a pentagon-shaped building

D8: Contour Plots of y -velocity at $\mathrm{z}=\mathbf{2 . 5 \mathrm { m }}$ and at plane of symmetry

For Run 1

Figure 13: Contour plot of y-velocity along z-plane at 2.5m for Task 3 (Run 1)

Figure 14: Contour plot of y-velocity along plane of symmetry for Task 3 (Run 1)

Description: From the above contours, it is observed that the wake formation (shadow region) has a velocity in the negative direction. Additionally, as we go above the pentagon building, the effect of building on the air flow (wind velocity) is reducing to a point that at the highest layers are practically at the same velocity i.e., $\approx 49.6 \mathrm{~m} / \mathrm{s}$.

For Run 2

Figure 15: Contour plot of y-velocity along z-plane at $2.5 m$ for Task 3 (Run 2)

Figure 16: Contour plot of y-velocity along plane of symmetry for Task 3 (Run 2)
D9: Values of total drag force and individual pressure and viscous term

	Total drag (N)	Pressure term of drag (N)	Viscous term of drag (N)
Run 1	363.95924	363.26703	0.69220895
Run 2	488.82443	488.48224	0.34219116

Table 4: Values of total drag force and individual pressure and viscous term for Task 3
Note: For Run 2, the inlet velocity is entered in the -y direction. Therefore, the higher velocity magnitude is observed in the negative range and the wake region has positive velocity, contrary to the contour of Run 1 .

Task 4: Laminar flow over an asymmetric shape for 1 min
D10: Contour plot of the stream function at $t=1 \mathrm{~min}$

Figure 17: Stream-function over an asymmetric shape at $t=1 \mathrm{~min}$
D11: Plot of lift force vs. time

Figure 18: Plot of lift force v / s flow time for 1 min
Geometry: The overall width and height of the geometry is 4 cm . Comparable with the Task 1 circular geometry.
Description: With the above asymmetric geometry, it is evident that the Lift Force [N] is oscillating between $\pm 0.05 \mathrm{~N}$ which is relatively higher than the circular and vertical ellipse cross-section cylinder. The period is $\approx 6 \mathrm{sec}$.

