MAE 598 Applied CFD Project # 3

Task 1

For this problem the time is used as transient. The mesh used is Fine. The setup uses No Slip Condition.

For Task 1 (a) we use viscous laminar flow and the material used is water.

For Task 1 (b) we use Viscous-turbulence k-epsilon and the material used is air.

For Mesh refinement we refine the mesh around the cylinder with the co-ordinates given in the problem statement.

We initialize the solution and run the calculations with time step 1 and for 3600 number of time steps for the period of 1 hour.

A:Task 1 a Fluent@ENCAD4113107.fulton.ad.asu.	edu [2d, pbns, lam, transient] [ANSYS Academic Resear
File Mesh Define Solve Adapt Surface D	isplay Report Parallel View Help
і 💼 📔 🕶 🞯 🞯 🗄 🔂 🗨 🔍 🖉	* 🗐 🔍 🏷 🖪 ד 🖂 🕇 🗎 🖄 ד 📾 ד 🖄 ד
Setup General Models Materials Cell Zone Conditions Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Results Calculation Results Calculations Plots Plots Parameters & Customization	Run Calculation Check Case Preview Mesh Motion Time Stepping Method Time Step Size (s) Fixed 1 Settings Number of Time Steps 3600 Image: Color of the step size (s) Options Image: Color of the step size (s) Data Sampling for Time Statistics Sampling Interval 1 Image: Color of the statistics Sampling Interval Image: Color of the statistics Max Iterations/Time Step Reporting Interval 40 Image: Color of the step size (s) Profile Update Interval Image: Color of the step size (s) Image: Color of the step size (s) Acoustic Signals Calculate Help

Results Task 1 (a)

Velocity Magnitude

Y-Component of Velocity

Pressure

Line plot of the x-component of velocity along the vertical line of x = 50 cm

Reynolds number =
$$\frac{\rho v d}{\mu} = \frac{998.2 \times 0.002 \times 0.2}{0.001003} = 398.08$$

Results Task 1 (b)

Velocity Magnitude

1.70e-01

Line plot of the x-component of velocity along the vertical line of x = 50 cm

Reynolds number =
$$\frac{\rho v d}{\mu} = \frac{1.225 \times 0.5 \times 0.2}{1.7894e - 05} = 6845.87$$

Task 2

For this problem the time is used as transient. The mesh used is Fine. The setup uses **No Slip Condition.**

We use viscous laminar flow and the material used is water.

For Mesh refinement we refine the mesh around the half fish with the co-ordinates given in the problem statement.

We initialize the solution and run the calculations with time step 1 and for 600 number of time steps for the period of 10 minutes.

Results Task 2

Pressure

The lift on the Half Fish

🖻 🍓 Setup	Reports	1: Mesh
Run Calculation	Reports Fluxes Forces Projected Areas - Unavailable Surface Integrals Volume Integrals Discrete Phase: Sample Histogram Summary Heat Exchanger - Unavailable Projected Areas - Unavailable Projected Phase: Sample Histogram Summary Heat Exchanger - Unavailable Direction Vector Wall Zones Orizontal Wall Orizontalwall antwall Y 1 2 0 Wall-surface	
	Vall Name Pattern Match Save Output Parameter Print Write Close Help	

Forces - Direction Vector	(0 1 0) Forces (n)		
Zone	Pressure	Viscous	Total
bottomwall	-0.00028849812	-5.2016144e-06	-0.00029369974
curvewall	-1.5696318e-05	7.1400909e-06	-8.5562269e-06
horizontalwall	6.9865669e-06	4.0345776e-07	7.3900246e-06
slantwall	2.1394808e-06	-7.9726919e-07	1.3422116e-06
verticalwall	0	5.4576702e-07	5.4576702e-07
Net	-0.00029506839	2.0904321e-06	-0.00029297796

The Lift exerted by pressure on the whole half fish = -0.00029506839 N

The Lift exerted by viscosity on the whole half fish = 2.0904321e-06 N

The Lift that is exerted on the whole half fish = -0.00029297796 N

The lift is negative. From the Pressure plot we can see that the maximum pressure is exerted on the top curve of the fish. From the image above we can see that maximum lift of 8.55 N is applied on the curve wall of the half fish and it is in the negative direction. The vertical wall will exert no lift so that wont be considered into account. Thus the pressure on top will cause a negative lift on the half fish.

Task 3

For this problem the time is used as transient. The mesh used is Fine. The setup uses **No Slip Condition.**

The transient simulation time t=10 minutes

We use viscous laminar flow and the material used is water.

The Mesh is refined with a 3-D sphere centered at (x,y,z) = (0,0,0) with a radius of 40 cm.

Problem Setup

Geometry

- 1) Use the text file and import it in geometry using 3D curve. Use the revolute command to create the 3D object.
- 2) Using the name selection we name the 3D object.
- Create the cylindrical enclosure using the Enclosure command in the Tools Tab in the toolbar. Select Cylinder under the Shape.

Input in the dimensions of the cylinder.

- 4) Using the Boolean operation subtract the Target Body (enclosure) and the tool body (3D fish).
- 5) Name the Velocity-inlet and Pressure-outlet on the enclosure.

Setup

For Mesh refinement we refine the mesh around the cylinder with the co-ordinates given in the problem statement.

F:Copy of Task 3 Parallel Fluent@ENCAD411310	7.fulton.ad.asu.edu [3d, pbns, lam, transient] [ANSYS Aca
File Mesh Define Solve Adapt Surface [Display Report Parallel View Help
🔳 📄 🕶 🛃 🕶 🞯 🔘 💽 💠 🍳 🕀 🤉	🧨 🔍 🎘 🖪 🕶 🖬 🕼 🕶 🖉 🖛 📲 👘 🖛 👘 📰
Setup General Gen	Run Calculation Check Case Time Stepping Method Time Step Size (s) Fixed I Settings Number of Time Steps 600 Options Input Coordinates Inside Options Input Coordinates Input Coordinates P Center (m) Y Center (m) Y Center (m) Y Center (m) V Center (m) V Center (m) V Center (m) V Center (m) Z Center (m) O Radius (m) O.4 Select Points with Mouse Adapt Mark Close

We initialize the solution and run the calculations with time step 1 and for 600 number of time steps for the period of 10 minutes.

D:Task 2 Fluent@ENCAD4113107.fulton.ad.asu.ed	u [2d, pbns, lam, transient] [ANSYS Academic Researc
File Mesh Define Solve Adapt Surface Dis	splay Report Parallel View Help
ا ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب	• 🔍 🏷 🖪 • 🗖 • 🎼 🕸 • 🔳 • 🌚 • 🚺
Setup General Models Materials Cell Zone Conditions Boundary Conditions Cell Zone Conditions Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Solution Initialization Calculation Activities Calculation Activities Run Calculation Results Calculations Calc	Run Calculation Check Case Time Stepping Method Time Stepping Method Time Stepping Method Time Stepping Method Fixed 1 Settings Number of Time Steps 600 Options Extrapolate Variables Data Sampling for Time Statistics Sampling Interval 1 Sampling Options Time Sampled (s) Max Iterations/Time Step 40 Profile Update Interval 1 1 Data File Quantities Acoustic Signals
	Calculate

Mesh of the system

Results Task 3

Task 4

It uses the same setup as Task 3.

Instead of constant inlet velocity, a parabolic profile is created by using the User Defined Function.

UDF Code

```
#include "udf.h"
DEFINE PROFILE(inlet x velocity, thread, position)
{
real x[ND_ND]; /* this will hold the position vector */
real y;
real z;
real R = 0.6;
real V max=2*.002;
face t f;
begin_f_loop(f, thread)
{
F_CENTROID(x,f,thread);
y = (x[1]);
z = (x[2]);
F PROFILE(f, thread, position) = 2*.002 - y*y/(R*R)*2*.002 - z*z/(R*R)*2*.002;
}
end_f_loop(f, thread)
}
```

Results Task 4

Velocity magnitude on the x-y plane

X-component of velocity on the vertical plane at x = .6 m

