Task 1

For this problem the time is used as transient. The mesh used is Fine. The setup uses No Slip Condition.

For Task 1 (a) we use viscous laminar flow and the material used is water.
For Task 1 (b) we use Viscous-turbulence k-epsilon and the material used is air.

For Mesh refinement we refine the mesh around the cylinder with the co-ordinates given in the problem statement.

We initialize the solution and run the calculations with time step 1 and for 3600 number of time steps for the period of 1 hour.

Results

Task 1 (a)

Velocity Magnitude

Y-Component of Velocity

Pressure
$2.72 \mathrm{e}-03$
$2.42 \mathrm{e}-03$
$2.11 \mathrm{e}-03$
$1.81 \mathrm{e}-03$
$1.50 \mathrm{e}-03$
$1.20 \mathrm{e}-03$
$8.95 \mathrm{e}-04$
$5.90 \mathrm{e}-04$
$2.85 \mathrm{e}-04$
$-2.00 \mathrm{e}-05$
$-3.25 \mathrm{e}-04$
-6.30e-04
$-9.35 \mathrm{e}-04$
$-1.24 \mathrm{e}-03$
$-1.54 \mathrm{e}-03$
$-1.85 e-03$
$-2.15 \mathrm{e}-03$
$-2.46 \mathrm{e}-03$
$-2.76 \mathrm{e}-03$
$-3.07 e-03$
$-3.37 \mathrm{e}-03$

Line plot of the x-component of velocity along the vertical line of $x=50 \mathrm{~cm}$
\qquad

Line plot of the x-component of velocity along the vertical line of $x=150 \mathrm{~cm}$

Reynolds number $=\frac{\rho v d}{\mu}=\frac{998.2 \times 0.002 \times 0.2}{0.001003}=\mathbf{3 9 8 . 0 8}$

Results

Task 1 (b)

Velocity Magnitude

Y-Component of Velocity
4.13e-01
3.74e-01
3.36e-01
2.97e-01
2.59e-01
2.20e-01
1.81e-01
$1.43 \mathrm{e}-01$
$1.04 \mathrm{e}-01$
$6.57 e-02$
$2.71 \mathrm{e}-02$
$-1.15 \mathrm{e}-02$
$-5.01 e-02$
$-8.87 e-02$
$-1.27 \mathrm{e}-01$
$-1.66 \mathrm{e}-01$
-2.04e-01
$-2.43 e-01$
$-2.82 \mathrm{e}-01$
$-3.20 \mathrm{e}-01$
$-3.59 \mathrm{e}-01$

Pressure

$1.70 \mathrm{e}-01$
$1.46 \mathrm{e}-01$
$1.23 e-01$
$9.91 \mathrm{e}-02$
$7.56 \mathrm{e}-02$
$5.21 \mathrm{e}-02$
$2.86 \mathrm{e}-02$
$5.11 \mathrm{e}-03$
$-1.84 \mathrm{e}-02$
$-4.19 \mathrm{e}-02$
$-6.54 \mathrm{e}-02$
-8.88e-02
-1.12e-01
-1.36e-01
$-1.59 e-01$
-1.83e-01
$-2.06 \mathrm{e}-01$
-2.30e-01
$-2.53 \mathrm{e}-01$
$-2.77 \mathrm{e}-01$
$-3.00 \mathrm{e}-01$

Line plot of the x-component of velocity along the vertical line of $x=50 \mathrm{~cm}$

Line plot of the x-component of velocity along the vertical line of $x=150 \mathbf{~ c m}$ - -line-150

Reynolds number $=\frac{\rho v d}{\mu}=\frac{1.225 \times 0.5 \times 0.2}{1.7894 e-05}=\mathbf{6 8 4 5 . 8 7}$

Task 2

For this problem the time is used as transient. The mesh used is Fine. The setup uses No Slip Condition.

We use viscous laminar flow and the material used is water.

For Mesh refinement we refine the mesh around the half fish with the co-ordinates given in the problem statement.

We initialize the solution and run the calculations with time step 1 and for 600 number of time steps for the period of 10 minutes.

Results

Task 2

Velocity Magnitude

$3.08 \mathrm{e}-03$
$2.92 \mathrm{e}-03$
$2.76 \mathrm{e}-03$
$2.59 \mathrm{e}-03$
$2.43 \mathrm{e}-03$
$2.27 \mathrm{e}-03$
2.11e-03
$1.94 \mathrm{e}-03$
$1.78 \mathrm{e}-03$
$1.62 \mathrm{e}-03$
$1.46 \mathrm{e}-03$
$1.30 \mathrm{e}-03$
1.13e-03
9.72e-04
$8.10 \mathrm{e}-04$
$6.48 \mathrm{e}-04$
$4.86 \mathrm{e}-04$
$3.24 \mathrm{e}-04$
$1.62 \mathrm{e}-04$
$0.00 \mathrm{e}+00$

Y-Component of Velocity

Pressure

3.42e-03
$3.05 \mathrm{e}-03$
2.69e-03
$2.32 \mathrm{e}-03$
$1.95 \mathrm{e}-03$
$1.59 \mathrm{e}-03$
$1.22 \mathrm{e}-03$
$8.57 \mathrm{e}-04$
4.92e-04
$1.26 \mathrm{e}-04$
$-2.39 \mathrm{e}-04$
-6.05e-04
$-9.70 \mathrm{e}-04$
$-1.34 \mathrm{e}-03$
$-1.70 \mathrm{e}-03$
$-2.07 e-03$
$-2.43 e-03$
$-2.80 \mathrm{e}-03$
$-3.16 \mathrm{e}-03$
$-3.53 \mathrm{e}-03$
-3.89e-03

The lift on the Half Fish

The Lift exerted by pressure on the whole half fish $=\mathbf{- 0 . 0 0 0 2 9 5 0 6 8 3 9} \mathbf{N}$
The Lift exerted by viscosity on the whole half fish $=\mathbf{2} . \mathbf{0 9 0 4 3 2 1 e - 0 6} \mathbf{N}$
The Lift that is exerted on the whole half fish $=\mathbf{- 0 . 0 0 0 2 9 2 9 7 7 9 6} \mathbf{~}$

The lift is negative. From the Pressure plot we can see that the maximum pressure is exerted on the top curve of the fish. From the image above we can see that maximum lift of 8.55 N is applied on the curve wall of the half fish and it is in the negative direction. The vertical wall will exert no lift so that wont be considered into account. Thus the pressure on top will cause a negative lift on the half fish.

Task 3

For this problem the time is used as transient. The mesh used is Fine. The setup uses No Slip Condition.

The transient simulation time $\mathrm{t}=10$ minutes
We use viscous laminar flow and the material used is water.
The Mesh is refined with a 3-D sphere centered at $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,0,0)$ with a radius of 40 cm .

Problem Setup

Geometry

1) Use the text file and import it in geometry using 3D curve. Use the revolute command to create the 3D object.
2) Using the name selection we name the $3 D$ object.
3) Create the cylindrical enclosure using the Enclosure command in the Tools Tab in the toolbar. Select Cylinder under the Shape.
Input in the dimensions of the cylinder.

Details of Enclosure1	
Enclosure	Enclosure1
Shape	Cylinder
Cylinder Alignment	Automatic
Number of Planes	0
Cushion	Non-Uniform
\square FD1, Cushion Radius (>0)	60 cm
\square FD2, Cushion (>0), +ive Direction	120 cm
\square FD3, Cushion (>0), -ive Direction	80 cm
Target Bodies	All Bodies

4) Using the Boolean operation subtract the Target Body (enclosure) and the tool body (3D fish). 5) Name the Velocity-inlet and Pressure-outlet on the enclosure.

Setup

For Mesh refinement we refine the mesh around the cylinder with the co-ordinates given in the problem statement.

We initialize the solution and run the calculations with time step 1 and for 600 number of time steps for the period of 10 minutes.

Mesh of the system

Velocity magnitude on the $x-y$ plane

Velocity velocity

velocity
$2.249 \mathrm{e}-003$
$2.024 \mathrm{e}-003$
$1.799 \mathrm{e}-003$
$-1.574 \mathrm{e}-003$
$-1.349 \mathrm{e}-003$
$-1.124 \mathrm{e}-003$
$-8.995 \mathrm{e}-004$
$6.746 \mathrm{e}-004$
$4.498 \mathrm{e}-004$
$2.249 \mathrm{e}-004$
$0.000 \mathrm{e}+000$

Pressure on the $x-y$ plane

Pressure pressure
2.688e-003
$2.374 \mathrm{e}-003$
$2.061 \mathrm{e}-003$
$-1.747 \mathrm{e}-003$
$-1.434 \mathrm{e}-003$
$-1.120 \mathrm{e}-003$
$8.069 \mathrm{e}-004$
$4.934 \mathrm{e}-004$
$1.799 \mathrm{e}-004$
$-1.335 \mathrm{e}-004$

X-component of velocity on the vertical plane at $x=.6 \mathrm{~m}$

Velocity u

Task 4

It uses the same setup as Task 3.
Instead of constant inlet velocity, a parabolic profile is created by using the User Defined Function.

UDF Code

```
#include "udf.h"
DEFINE_PROFILE(inlet_x_velocity, thread, position)
{
real x[ND_ND]; /* this will hold the position vector */
real y;
real z;
real R = 0.6;
real V_max=2*.002;
face_t f;
begin_f_loop(f, thread)
{
F_CENTROID(x,f,thread);
y = (x[1]);
z = (x[2]);
F_PROFILE(f, thread, position) = 2*.002-y*y/(R*R)*2*.002-z*z/(R*R)*2*.002;
}
end_f_loop(f, thread)
}
```


Results

Task 4

Velocity magnitude on the x-y plane

Pressure on the $x-y$ plane

X-component of velocity on the vertical plane at $x=.6 \mathrm{~m}$
Velocity u
x componeent parallel to yz
$3.990 \mathrm{e}-003$
3.708e-003
$3.708 \mathrm{e}-003$
$3.427 \mathrm{e}-003$
$3.427 \mathrm{e}-003$
$3.145 \mathrm{e}-003$
. $863 \mathrm{e}-003$
$2.863 \mathrm{e}-003$
2.581e-003
$2.299 \mathrm{e}-003$
$1.018 \mathrm{e}-003$
$1.736 e-003$
$1454 e-003$
$1.454 \mathrm{e}-003$
8
8.905e-004
6.087e-004
3.269e-004
.510e-005
$-2.367 \mathrm{e}-004$
-5.185e-004 8.003e-004 [m s^-1]

X-component of velocity at the inlet

