Challenge \#5 (pool = 80 points, cap = 4 points)
[No collaboration]
a) Use the setting of Task 1(a) as the starting point.

Figure 1: Setup of elongated cylinders.
Table 1: Amplitude and Oscillation

Object shape	Amplitude	Period of oscillation
Circle	0.00368	2.49 minutes
Ellipse (i) [elongated in y]	0.00843	2.71 minutes
Ellipse (ii) [elongated in x]	0.00161	2.15 minutes

Ellipse radii was set to $0.08 \mathrm{~m} \& 0.125 \mathrm{~m}$ to maintain equal body area to the 0.10 m radius circle.

Figure 2: Lift of circular object
(b) Repeat (a), but now change the circular cylinder to an elliptical cylinder with approximately the same body area. Consider the two cases: (i) A cylinder elongated in y-direction, (ii) A cylinder elongated in x direction.

Figure 3: Lift of ellipse elongated in the y-direction.

Figure 4: Lift of ellipse elongated in the x-direction.

Figure 5: Lift comparison between the three different objects.
Fig. 5 above illustrates the lift coefficient of the three different objects. It is clear that the ellipse elongated in the y-direction creates the largest amplitudes in the oscillations.

