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Problem Collaboration Note. I collaborated with William “Davis” Burk on this chal-
lenge problem. We simply helped each other with bugs and setting up the simulation. All
work and code contained within this document is my own and created from my own work-
station.

Problem Challenge #4. This challenge required us to create a 2D domain that consisted
of two tanks connected by a pipe below them, allowing fluid to travel between the two. One
tank had a higher level of water, causing an oscillation between the two. Below is a diagram
of the geometry.

Figure 1: Initial geometry and problem setup.

From here, the meshing was done using a slightly finer mesh than the default ”Fine”
setting. The top two tank outlets were simply labeled ”outlet-1“ and ”outlet-2“ since we’d
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be changing them later. In FLUENT, the boundary conditions were both set to pressure
outlets with no outflow conditions. Each tank was then separated from the original surface
body mesh so that we could perform a volume monitor on both tanks separately without
data from the pipe. Water was designated as Phase 2 and was patched in two separate
chunks to simulate the two different initial water levels. The simulation was run until the
volume of each tank had done three full oscillations. Since the volume of water in each tank
is proportional to the depth (2D), it was a clear indicator of depth and exported as a text
file into MATLAB to create the following plot.

Figure 2: Plot showing the depth of water in each tank as a function of time. This was
calculated by dividing volume of water in each tank by width to find average depth.

Using this data in MATLAB, we were able to determine the average period of oscil-
lation and the times when the water levels were equal for the first two times. The average
period was calculated to be approximately 1.92 seconds. The code used to calculate this
is attached. The first two times that the water levels were equal were found to be approx-
imately 0.55 seconds and 1.52 seconds. Using these two times, the simulation was run
again to these two points to generate velocity vector plots. These are shown below.
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Figure 3: Velocity vector plots for 0.55 seconds.

Figure 4: Velocity vector plots for 1.52 seconds. The circulation on the water surface.
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Finally, a volume fraction contour was made for the time point when the right tank
hit its maximum depth for the first time. This plot is shown below.

Figure 5: Volume fraction when the right tank peaks for the first time. Water is defined as
red, phase 2. This occurred at approximately 0.98 seconds.
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The final part of this challenge problem required us to use different combinations
of boundary conditions for the tops of the tanks and observe FLUENT’s response to them.
The first combination I tried was giving the left tank a wall for a top boundary condition
and leaving the right tank as a pressure outlet. I would assume the fluid wouldn’t move
due to the lack of a path for the air to take. Below is the result after 5 seconds.

Figure 6: Left boundary condition is a wall while right is kept as pressure outlet at 5 seconds.

As predicted, the fluid does not move after 5 seconds because of the pressure in the
cavity above it. This combination of boundary conditions does not work.

The next combination I tried was to make the left boundary an intake fan and the
right boundary a outlet vent. Unfortunately, FLUENT did not like this combination and
threw a floating point exception error relatively early in the calculation process.

Figure 7: FLUENT is not as adventurous as myself.
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The third combination I tried was a bit less wild. I set the left boundary to pressure
inlet and the right boundary to outflow. Again, after running a bit longer than the previous
simulation, my Courant number grew too large and the simulation had to stop.

Figure 8: 1,388 is much larger than an ideal Courant number.

Determined to get a somewhat interesting result, I tried a fourth and final combina-
tion of boundary conditions. I set the left boundary to a pressure inlet and set the right
boundary to a pressure outlet and attempted to run the simulation for 5 seconds. The
result is below and looks very similar to when both boundary conditions are pressure outlets.

Figure 9: Water level is extremely similar. Pressure inlet must behave similarly to pressure
outlet.

This shows that many boundary conditions, without knowledge or their operation
and correct setup, will often throw errors within FLUENT that causes the simulation to
stop. Some boundary conditions, such as pressure inlet, seem to behave similarly to pres-
sure outlet. I personally do not know if there is a difference other than a name, but I
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assume there is. Other conditions, such as outflow, seemingly work in previous simulation
in Project #2 but do not work here. This may be due to flow going both ways throughout
the oscillation and not a steady direction similar to the methane problem. Pressure outlet
seems to be a good choice when flow varies in both velocity and direction through a boundary.

Below begins the MATLAB code used to calculate values in this challenge problem.

1 %Shane Dombrowski
2 %Applied CFD Chal lenge #4
3 c l ea r , c l c
4

5 tank1=importdata ( ’ tank1 . txt ’ )
6 tank2=importdata ( ’ tank2 . txt ’ )
7 tank1=tank1 . data ;
8 tank2=tank2 . data ;
9

10 width =0.15; %width o f tank in meter
11

12 time=tank1 ( : , 1 ) ;
13 tank1vol=tank1 ( : , 2 ) ;
14 tank2vol=tank2 ( : , 2 ) ;
15

16 %This d i v i d e s the volume o f water in each tank by the width o f the
tank to

17 %c a l c u l a t e average he ight o f the water .
18

19 he ight1=tank1vol . / width ;
20 he ight2=tank2vol . / width ;
21

22 he ight1=he ight1 ∗100 ; %conver t s meters to cen t imete r s
23 he ight2=he ight2 ∗100 ;
24

25 f i g u r e (1 )
26 p lo t ( time ∗0 .01 , height1 , time ∗0 .01 , he ight2 )
27 ylim ( [ 9 1 6 ] )
28 x l a b e l ( ’Time , s ’ )
29 y l a b e l ( ’ Water Depth , cm ’ )
30 t i t l e ( ’ Water Depth vs . Time ’ )
31 l egend ( ’Tank 1 Depth ’ , ’Tank 2 Depth ’ )
32

33 %Find f i r s t two po in t s in time where water l e v e l s are equal .
34

35 eq1=he ight1 ( 1 : 1 0 0 )−he ight2 ( 1 : 1 0 0 ) ;
36 eq2=he ight1 (100 : 200 )−he ight2 (100 : 200 ) ;
37 eq3=he ight1 (200 : 300 )−he ight2 (200 : 300 ) ;
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38 eq4=he ight1 (300 : 400 )−he ight2 (300 : 400 ) ;
39 eq5=he ight1 (400 : 500 )−he ight2 (400 : 500 ) ;
40 eq6=he ight1 (500 : 600 )−he ight2 (500 : 600 ) ;
41 eq7=he ight1 (600 : 700 )−he ight2 (600 : 700 ) ;
42

43 k1=f i n d ( abs ( eq1 ) <0.05) ;
44 k2=f i n d ( abs ( eq2 ) <0.01) ;
45 k3=f i n d ( abs ( eq3 ) <0.02) ;
46 k4=f i n d ( abs ( eq4 ) <0.01) ;
47 k5=f i n d ( abs ( eq5 ) <0.01) ;
48 k6=f i n d ( abs ( eq6 ) <0.01) ;
49 k7=f i n d ( abs ( eq7 ) <0.006) ;
50 k2=k2+100;
51 k3=k3+200;
52 k4=k4+300;
53 k5=k5+400;
54 k6=k6+500;
55 k7=k7+600;
56

57 equa l t ime1=time ( k1 ) ∗0 .01
58 equa l t ime2=time ( k2 ) ∗0 .01
59 equa l t ime3=time ( k3 ) ∗0 . 0 1 ;
60 equa l t ime4=time ( k4 ) ∗0 . 0 1 ;
61 equa l t ime5=time ( k5 ) ∗0 . 0 1 ;
62 equa l t ime6=time ( k6 ) ∗0 . 0 1 ;
63 equa l t ime7=time ( k7 ) ∗0 . 0 1 ;
64

65 %Calcu la te average per iod
66

67 p1=equal t ime3−equa l t ime1 ;
68 p2=equal t ime5−equa l t ime3 ;
69 p3=equal t ime7−equa l t ime5 ;
70

71 avg per iod=mean ( [ p1 p2 p3 ] ) ;
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