Rylie Lodes MAE 494: Applied CFD Professor HP Huang Homework 1 Report

1. Contour plots of velocity and temperature in the plane of symmetry, as well as a contour plot of temperature over the circular opening of the outlet.

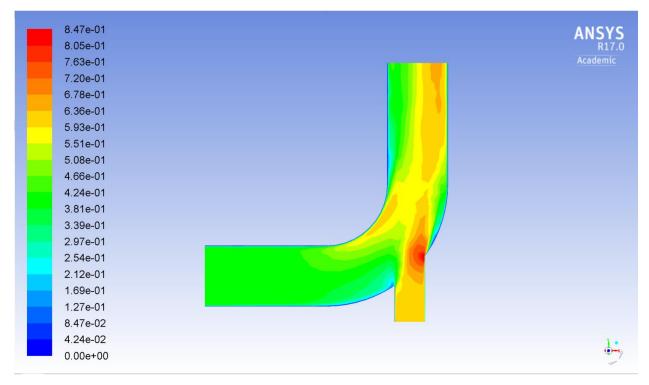



Figure 1: Velocity on plane of symmetry for the R=1in. inlet pipe, R=2in large inlet, and an inlet velocity for the small inlet of 0.6m/s.

| 3.13e+02<br>3.12e+02<br>3.11e+02<br>3.09e+02<br>3.09e+02<br>3.07e+02<br>3.06e+02<br>3.05e+02<br>3.05e+02<br>3.04e+02<br>3.03e+02<br>3.02e+02<br>3.01e+02<br>3.01e+02<br>3.00e+02<br>2.99e+02<br>2.98e+02<br>2.98e+02 | ANSYS<br>R17.0<br>Academic |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2.95e+02<br>2.94e+02<br>2.93e+02                                                                                                                                                                                     | <b>b</b> -,                |

Figure 2: Temperature distribution on the plane of symmetry.

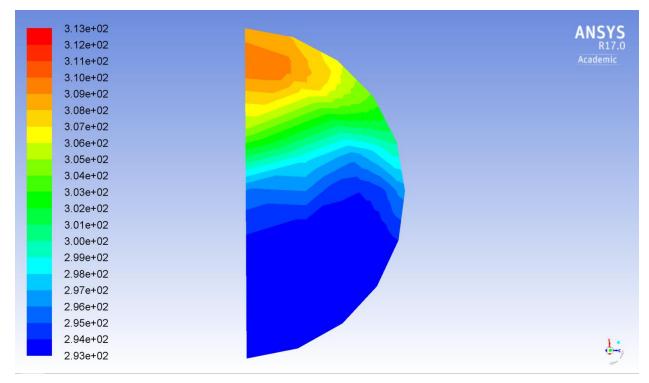



Figure 3: Temperature profile for the outlet.

2. Line plots of temperature and velocity along the line AB, with comparisons of profiles with their counterparts from the standard case in Task 0 (R=0.5in and V\_inlet = 1.2m/s).

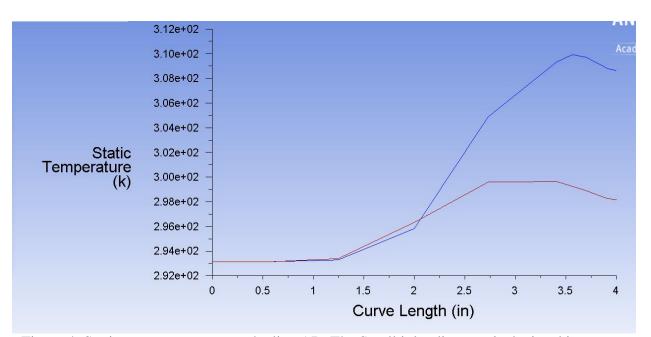



Figure 4: Static temperature across the line AB. The Small inlet diameter is depicted in red, while the Large inlet diameter is depicted in blue.

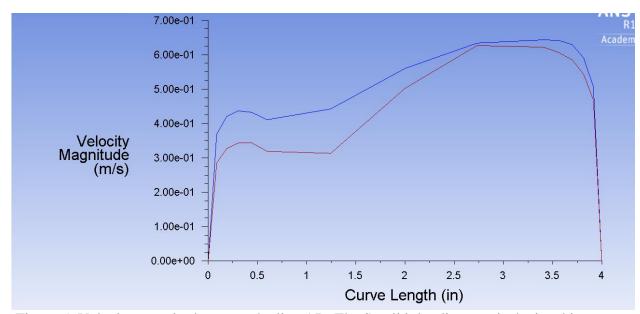



Figure 5: Velocity magnitude across the line AB. The Small inlet diameter is depicted in red, while the Large inlet diameter is depicted in blue.

3. Check the energy balance and mass balance of the system. Calculate the three values of H and three values of M to show the requirements of energy and mass balance are satisfied.

In order to perform the surface integrals, custom field functions were defined for heat flux and mass flux; one for the large inlet and one for the two outlets (both have velocity vectors in the y direction). The general solution steps are as follows, with figures to visually show the windows and equations:

| Field Function Definitions                                                              | ×                             |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------|--|--|
| Definition                                                                              |                               |  |  |
| Vx * density * specific-heat-cp * temperature                                           |                               |  |  |
| Field Functions   heat-flux-large-inlet   heat-flux-inletsmall-outlet   large-inlet-mfr | Name<br>heat-flux-large-inlet |  |  |
| mfr-inletsmall-outlet                                                                   | ID<br>0                       |  |  |
| Rename Delete Save                                                                      | Load Close Help               |  |  |

Figure 6: Custom Field Function for calculating surface integrals for heat flux (large inlet depicted)

| Field Function Definitions  | ×                               |
|-----------------------------|---------------------------------|
| Definition                  |                                 |
| Vx * density                |                                 |
| Field Functions             | Name                            |
| heat-flux-large-inlet       | large-inlet-mfr                 |
| heat-flux-inletsmall-outlet |                                 |
| large-inlet-mfr             |                                 |
| mfr-inletsmall-outlet       |                                 |
|                             | ID                              |
|                             | 2                               |
|                             |                                 |
|                             |                                 |
|                             |                                 |
| Ren                         | ame Delete Save Load Close Help |

Figure 7: Custom Field Function for calculating surface integrals for mass flux (large inlet depicted)

## Surface Integrals

| Report Type           | Field Variable             |  |
|-----------------------|----------------------------|--|
| Integral 👻            | Custom Field Functions 🝷   |  |
| Custom Vectors        | large-inlet-mfr 🔹          |  |
| Vectors of            | Surfaces [1/8] 🗉 🔳 =       |  |
| Custom Vectors        | interior-solid<br>line-7   |  |
| Surface Types [0/31]  | line-ab<br>pressure-outlet |  |
| axis 🔨                |                            |  |
| clip-surf             | velocity-inlet-large       |  |
| exhaust-fan           | velocity-inlet-small       |  |
| fan 🗸                 | wall-solid                 |  |
| Surface Name Pattern  |                            |  |
| Match                 |                            |  |
| materi                | Highlight Surfaces         |  |
| Save Output Parameter | Integral                   |  |
|                       | 1.594912                   |  |
| Compute W             | /rite Close Help           |  |

Figure 8: Using Surface Integrals to compute large inlet mass flux

| Field Variable                                                                                                           |                          |       |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|--|--|
| Custom Field                                                                                                             | Custom Field Functions 🝷 |       |  |  |
| heat-flux-large-inlet 🔹                                                                                                  |                          |       |  |  |
| Surfaces                                                                                                                 | [1/8]                    | : = = |  |  |
| interior-solid<br>line-7<br>line-ab<br>pressure-out<br>symmetry<br><u>velocity-inlet</u><br>velocity-inlet<br>wall-solid | let<br>:-large           |       |  |  |
| Highlight Surfaces                                                                                                       |                          |       |  |  |
| Integral                                                                                                                 |                          |       |  |  |
| 1971184                                                                                                                  |                          |       |  |  |

Figure 9: Surface Integral for large inlet heat flux

 $\times$ 

| Field Variable       |                |       |  |
|----------------------|----------------|-------|--|
| Custom Field         | functions      | -     |  |
| heat-flux-inl        | etsmall-outlet | •     |  |
| Surfaces             | [1/8]          | 3 2 = |  |
| interior-solid       | ł              |       |  |
| line-7               |                |       |  |
| line-ab              |                |       |  |
| pressure-out         | tlet           |       |  |
| symmetry             |                |       |  |
| velocity-inlet-large |                |       |  |
| velocity-inlet-small |                |       |  |
| wall-solid           |                |       |  |
|                      |                |       |  |
|                      |                |       |  |
| Highlight Surfaces   |                |       |  |
| Integral             |                |       |  |
| 789624.9             |                |       |  |

Figure 10: Surface Integral for small inlet heat flux

| Field Variable                                                                                                 |                  |              |  |
|----------------------------------------------------------------------------------------------------------------|------------------|--------------|--|
| Custom Field Functions 🔻                                                                                       |                  |              |  |
| heat-flux-inl                                                                                                  | etsmall-outlet   | -            |  |
| Surfaces                                                                                                       | [1/8]            | <b>) = =</b> |  |
| interior-solid<br>line-7<br>line-ab<br>pressure-ou<br>symmetry<br>velocity-inle<br>velocity-inle<br>wall-solid | tlet<br>:t-large |              |  |
| Highlight<br>Integral                                                                                          | Surfaces         |              |  |
| 2760810                                                                                                        |                  |              |  |

Figure 11: Surface Integral for outlet heat flux

| Field Variable           |          |            |  |  |
|--------------------------|----------|------------|--|--|
| Custom Field Functions 🝷 |          |            |  |  |
| large-inlet-m            | fr       | -          |  |  |
| Surfaces                 | [1/8]    | <b>= =</b> |  |  |
| interior-solid           | I        |            |  |  |
| line-7                   |          |            |  |  |
| line-ab                  |          |            |  |  |
| pressure-out             | let      |            |  |  |
| symmetry                 | symmetry |            |  |  |
| velocity-inle            | t-large  |            |  |  |
| velocity-inlet-small     |          |            |  |  |
| wall-solid               |          |            |  |  |
|                          |          |            |  |  |
|                          |          |            |  |  |
| Highlight :              | Surfaces |            |  |  |
| Integral                 |          |            |  |  |
| 1.594912                 |          |            |  |  |

Figure 12: Surface Integral for large inlet mass flux

| Field Variable           |          |       |  |  |
|--------------------------|----------|-------|--|--|
| Custom Field Functions 🝷 |          |       |  |  |
| mfr-inletsmall-outlet    |          |       |  |  |
| Surfaces                 | [1/8]    | 3 2 = |  |  |
| interior-solid           | 1        |       |  |  |
| line-7                   |          |       |  |  |
| line-ab                  |          |       |  |  |
| pressure-out             | tlet     |       |  |  |
| symmetry                 | symmetry |       |  |  |
| velocity-inlet-large     |          |       |  |  |
| velocity-inlet-small     |          |       |  |  |
| wall-solid               |          |       |  |  |
|                          |          |       |  |  |
|                          |          |       |  |  |
| Highlight Surfaces       |          |       |  |  |
| Integral                 |          |       |  |  |
| 0.5980917                |          |       |  |  |

Figure 13: Surface Integral for small inlet mass flux

| Field Variable                                                                                                    |                |                 |  |
|-------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--|
| mfr-inletsmal                                                                                                     |                | •               |  |
| Surfaces                                                                                                          | [1/8]          | <b>&gt; =</b> = |  |
| interior-solid<br>line-7<br>line-ab<br>pressure-out<br>symmetry<br>velocity-inlet<br>velocity-inlet<br>wall-solid | let<br>t-large |                 |  |
| Highlight Surfaces                                                                                                |                |                 |  |
| Integral                                                                                                          |                |                 |  |
| 2.193004                                                                                                          |                |                 |  |

Figure 14: Surface Integral for pressure outlet mass flux

 $M = 1.594912 + 0.5980917 - 2.193004 = -0.0000003 \ kg/s$  $H = 1971184 + 789624.9 - 2760810 = -1.1W \ (w/\ constants)$ 

Mass was conserved within 0.00003% which is a very good approximation from the software. The difference in Heat with the constants of Cp and density included results in a difference of 1.1W, which is nearly negligible considering the order of magnitude of the fluxes (~ e+06).