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PI’OjCCt # 2! Transient Simulation using VOF Methods

INITIAL SET UP

The initial set-up for all the geometries varied with respect to each tasks. The common
similarities between these tasks were the following: Added mesh refinement (figla), used VOF methods
(figlb), turned on gravity (figlc), and followed Tutorial 3 guidelines for Solution Methods and Solution
Controls. All pictures have phase 2 (testing material) colored in red.
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Figure 1a: Added Refinement Figure 1b: VOF Model Figure 1c: Operating Conditions
TAsK 1
CASEA

Task 1 involved setting the viscosity to the viscous-laminar or inviscid conditions and tracking

changes in the contour plot at different time steps. Figure 2 illustrates the change in shape of the engine-
oil due to kerosene at 0, 1, 5 and 10 seconds.
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Figure2a:t=0 Figure 2b: Setup t = 1s
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CASEB

Figure 2c: t = 5sec Figure 2d: t = 10 sec

Case B started with the same initial setup while changing the viscosity to the inviscid conditions.

The same time steps were chosen.
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Figure3a:t=0 Figure 3b: Setup t = 1s

Figure 3c: t = 5sec Figure 3d: t = 10 sec
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CASEC

Equations 1 and 2 found the Kinetic Energy and Potential Energy for the system. The following
functions were used to graph the Available, Kinetic and Total Potential energies within the system.

PE=[[pgydrdy Eq. (1)
KE=jJ.%|:{ v+ ) dedy Eq. (2)

The first step was to find the baseline potential energy (PEo) for this system, which represents the
energy at the final state. This value was found by integrating along the steady state condition when both
fluids stopped moving within the

PEO = PESteadystate Engine oil + PESteadystate Kerosene
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Figure4: ¢t =0
The Available Potential Energy (APE) was equal to the potential energy in the system minus the
baseline energy (APE = PE — PEy). Figure 5 represents the Custom Functions created for this task. The
APE function had to use a factor of a half for the PE, since computation of the integral would
inadvertently multiply a factor of 2. To cancel this factor out, the APE function had to be modified as
seen in fig. 5a.
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Using the Volume Monitors, on Fluent’s Solution tab, | was able to monitor the changes in
energy, in real time, as the solution approached 25 seconds. Figure 6 shows how these monitors were set
up. The volume integral option was used since the energy equations were related to the double integral
where z was held constant. Figure 7 shows the results for the two viscous models.
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Figure 6a: Monitor Figure 6b: Volume Monitor
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ANSYS

R17.1
Academic

T T
0.0000 5.0000 10,0000 15.0000 20.0000 25.0000 30.0000
Time (s)

Figure 7b: Invicid
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The two graphs above relate the effects of viscosity on the energy within the system. Initial observations

shows that the inviscid model (lack of viscosity) has a rate of change in total energy, that is much smaller
than the laminar viscosity model. This makes logical sense since viscosity adds internal friction within the

interacting fluids. This causes usable energy in the laminar model, to dissipate quicker than the inviscid
model.

TASK 2
CASEA

Task 2 involved a new geometry, where water is injected through an inlet that produces a jet
gradually filling a container with air.

ijECt ﬂ\'l it Tnlet Primary Phase
- (g Model (03) elocty Narme
----- AT Geometry Tone Name Phase phase-1
----- % Coordinate Systems velociy-nlet el phase Material[air
- 4B Mesh
i Refinement | Momentum | Themal | Radaton | Speces | DaM | Mutphase @ Secondary Phase
= G Named Selections ‘ Mame
- B velocity-inlet Volume Fraction 1 phase-2
'/&] pressure-outlet Phase Material| water-liquid
Figure 8a: Mesh Figure 8b: Volume Fraction Figure 8c: Phases

Figure 9a: t = 2sec 7 Figure 9b: t = 4sec

Figure 9c: t = 6sec
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CASEB

Figure 10a: t = 1sec Figure 10b: t = 2sec

Figure 10c: t = 3sec

Case A and Case B only differ in inlet velocity condition. This was seen in the y direction of the fluid as it
fills the container. When one compares Figure 9b and 10b, one can see that the y-direction that the water
travels as it hits the wall surface is much greater due to the increase velocity of the water filling the

container.
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TASK 3
CASEA

Task 3 used similar setups as Task 2, except with more selected areas to define velocity inlets and
volume fractions. Figure 11 depicts inlet velocity of 0.2 m/s whereas figure 12 has 2m/s at inlet.

O

Figure 11a: 5sec @ V =0.2m/s Figure 11b: 10sec @ V =0.2m/s
CASEB

'

Figure 12a: 5sec @ V =5.0m/s Figure 12b: 10sec @ V =5.0m/s




