Project # 2: Transient Simulation using VOF Methods

INITIAL SET UP

The initial set-up for all the geometries varied with respect to each tasks. The common similarities between these tasks were the following: Added mesh refinement (fig1a), used VOF methods (fig1b), turned on gravity (fig1c), and followed Tutorial 3 guidelines for Solution Methods and Solution Controls. All pictures have phase 2 (testing material) colored in red.

 Project Model (D3) Geometry Coordinate Syste Mesh Advanced Statistics 	Model Off Volume of Fluid Mature Eulerian Wet Steam Coupled Level Set + VOF Level Set Volume Fraction Parameters Formulation Explicit Volume Fraction Cutoff	Number of Eulerian Phases 2 VOF Sub-Models Open Channel Flow Open Channel Flow Open Channel Wave BC Options Interface Modeling Type Sharp Sharp/Dispersed Dispersed Interfacial Anti-Diffusion Expert Options	✓ Gravity Units Gravitational Acceleration X (m/s2) 0 Y (m/s2) -9.8 Z (m/s2) 0	P
Nodes 16	289 Courant Number 0.25			P
Mesh Metric N	Body Force Formulation Timplicit Body Force			

Figure 1a: Added Refinement

Figure 1b: VOF Model

Figure 1c: Operating Conditions

TASK 1

CASE A

Task 1 involved setting the viscosity to the *viscous-laminar* or *inviscid* conditions and tracking changes in the contour plot at different time steps. Figure 2 illustrates the change in shape of the engine-oil due to kerosene at 0, 1, 5 and 10 seconds.

Case B started with the same initial setup while changing the viscosity to the *inviscid* conditions. The same time steps were chosen.

Figure 3d: t = 10 *sec*

CASE C

Equations 1 and 2 found the *Kinetic Energy* and *Potential Energy* for the system. The following functions were used to graph the Available, Kinetic and Total Potential energies within the system.

$$PE = \int \int \rho \ g \ y \ dx \ dy \ , \qquad \text{Eq. (1)}$$
$$KE = \int \int \frac{1}{2} \rho (\ u^2 + v^2) \ dx \ dy \ , \qquad \text{Eq. (2)}$$

The first step was to find the *baseline potential energy* (PE_0) for this system, which represents the energy at the final state. This value was found by integrating along the steady state condition when both fluids stopped moving within the

$$PE_{0} = PE_{Steadystate Engine oil} + PE_{Steadystate Kerosene}$$

$$9.8 \times \left(889 \cdot \int_{0}^{0.32} \int_{0}^{2} y dx dy + 780 \cdot \int_{0.32}^{1} \int_{0}^{2} y dx dy\right)$$

$$9.8 \times \left(889 \cdot \int_{0}^{0.32} 2y dy + 780 \cdot \int_{0.32}^{1} 2y dy\right)$$

$$9.8 \times (91.0336 + 700.128)$$

$$\underline{PE_{0} = 7753.38}$$
Kerosene
$$.32m - \left(\underbrace{Engine Oil}_{Figure 4: t = \infty} \right)^{.68m}$$

The Available Potential Energy (APE) was equal to the potential energy in the system minus the baseline energy (APE = $PE - PE_0$). Figure 5 represents the Custom Functions created for this task. The APE function had to use a factor of a half for the PE_0 since computation of the integral would inadvertently multiply a factor of 2. To cancel this factor out, the APE function had to be modified as seen in fig. 5a.

Using the *Volume Monitors*, on Fluent's *Solution tab*, I was able to monitor the changes in energy, in real time, as the solution approached 25 seconds. *Figure 6* shows how these monitors were set up. The volume integral option was used since the energy equations were related to the double integral where z was held constant. Figure 7 shows the results for the two viscous models.

gra Solution Controls		T Malana Marilan	
Monitors			
S Peridual		Name	Report Type
la Residual		avail.potential-nrg	Volume Integral
Statistic		Options	Field Variable
🔊 Drag		Print to Console	Custom Field Functions
🔊 Lift		Plot	avail.potential-nrg
Moment	Create Edit Delete	Window	Phase
		2 Curves Axes	mixture
Surface	Volume Monitors		Call Zapas [1/1]
Volume		Write	
N avail potential-pro	avail.potentiai-nrg - volume integral, mixtu	File Name	surface_body
avail.potentiai-nig	kinetic-nrg - Volume Integral, mixture kinet	./vol-mon-1.out	
kinetic-nrg	total - Volume Integral, mixture total vs. Flo	X Axis	
🔊 total	-	Flow Time	
Report Definitions	< III	Get Data Every	
🔊 Report Files		1 🗢 Time Step 🔻	Save Output Parameter
Report Plots	Create Eur Delete	Average Over(Time Steps)	
		1	

Figure 6a: Monitor

Figure 6b: Volume Monitor

Figure 7a: Laminar

The two graphs above relate the effects of viscosity on the energy within the system. Initial observations shows that the inviscid model (lack of viscosity) has a rate of change in total energy, that is much smaller than the laminar viscosity model. This makes logical sense since viscosity adds internal friction within the interacting fluids. This causes usable energy in the laminar model, to dissipate quicker than the inviscid model.

TASK 2

CASE A

Task 2 involved a new geometry, where water is injected through an inlet that produces a jet gradually filling a container with air.

Figure 9a: t = 2sec

Figure 9b: t = 4sec

Figure 9c: t = 6sec

Thomas Chengattu MAE 494 November 10 2016

Figure 10c: t = *3sec*

Case A and Case B only differ in inlet velocity condition. This was seen in the y direction of the fluid as it fills the container. When one compares *Figure 9b* and *10b*, one can see that the y-direction that the water travels as it hits the wall surface is much greater due to the increase velocity of the water filling the container.

TASK 3

CASE A

Task 3 used similar setups as Task 2, except with more selected areas to define velocity inlets and volume fractions. Figure 11 depicts inlet velocity of 0.2 m/s whereas figure 12 has 2m/s at inlet.

