MAE 598: Applied CFD Project #3

By: Alex Kozlowski

Collaboration: Jon Reyes

<u> Task 1:</u>

General Setup -

The basic geometry and dimensions are shown in Figure 1 below. The blue circle in Figure 1 has a radius of 10cm. The following simulation is in 2 dimensions.

Figure 1: Basic Dimensions of Task 1

Part A -

General Setup -

The material used in this simulation is liquid kerosene with constant density and viscosity. The inlet velocity, shown in Figure 1, is 0.006 m/s. The model used by the simulation is Viscous-laminar. The simulation is run for 1 hour with a relevance center set to fine with an adapted region indicated with a red dashed line in Figure 1.

Estimate Reynolds number of the system.

Re =
$$\frac{\rho v D}{\mu}$$

Re = $\frac{780(0.006)(0.2)}{(0.0024)}$
Re = 390 → Transition

(2):

The contour plot of the velocity magnitude is shown in Figure 2.

Figure 2: Velocity Magnitude Contour Plot for Task 1, Part A

The contour of the y-component of velocity is shown in Figure 3.

Figure 3: Y-Component of Velocity of Task 1, Part A

The contour plot of the static pressure is shown in Figure 4.

Figure 4: Static Pressure Contour Plot of Task 1, Part A

The line plots of the x-component of velocity at x=50 cm and x=150 cm is shown below in Figure 5.

Part B -

General Setup -

The material used in this simulation is liquid water with constant density and viscosity. The inlet velocity, shown in Figure 1, is 0.0003 m/s. The model used by the simulation is Viscous-laminar. The simulation is run for 1 hour with a relevance center set to fine with an adapted region indicated with a red dashed line in Figure 1.

Estimate Reynolds number of the system.

$$Re = \frac{\rho vD}{\mu}$$
$$Re = \frac{998.2(0.0003)(0.2)}{(0.001003)}$$
$$Re = 59.11 \rightarrow Transition$$

(2):

The contour plot of the velocity magnitude is shown in Figure 6.

Figure 6: Velocity Magnitude Contour Plot for Task 1, Part B

The contour of the y-component of velocity is shown in Figure 7.

Figure 7: Y-Component of Velocity of Task 1, Part B

The contour plot of the static pressure is shown in Figure 8.

Figure 8: Static Pressure Contour Plot of Task 1, Part B

The line plots of the x-component of velocity at x=50 cm and x=150 cm is shown below in Figure 9.

Figure 9: X-Component of Velocity Line Plots at x=50 cm and x=150 cm

<u> Task 2:</u>

General Setup -

The basic geometry and dimensions are shown in Figure 10 below. The geometry is provided by the instructor. The mesh applied to the geometry uses a relevance sizing of fine with adaptations to the mesh shown by the dashed red line in Figure 10. The following simulation is in 2 dimensions. The simulation uses air as the material with constant density and viscosity. The velocity inlet is set to 10 m/s, uniform. The calculations are done with the viscous-turbulence k-epsilon model. The results are gathered from the steady state solution.

Figure 10: Basic Geometry and Dimensions for Task 2

The contour plot of the velocity magnitude is shown in Figure 11.

Figure 11: Velocity Magnitude Contour Plot for Task 2

The streamline function contour is shown in Figure 12.

Figure 12: Streamline Function Contour Plot for Task 2

The static pressure contour plot is shown in Figure 13.

Figure 13: Static Pressure Contour Plot for Task 2

(2):

The calculation of the lift that the fluid exerts on the geometry is shown in Figure 14.

Forces - Direction Vector (0 1 0)							
Zone fish	Pressure -7.8535562	Viscous 0.0031830491	Total -7.8503731	Pressure -12.822132	Viscous 0.0051968149	Total -12.816936	
Net	-7.8535562	0.0031830491	-7.8503731	-12.822132	0.0051968149	-12.816936	

Figure 14: Lift Calculations on Geometry for Task 2

(3):

The calculation of the drag that the fluid exerts on the geometry is shown in Figure 15.

orces - Direction Vector (1 0 0) Forces (n) Coefficients							
Zone fish	Pressure 2.6363652	Viscous 0.045086809	Total 2.681452	Pressure 4.3042697	Viscous 0.073611116	Total 4.3778808	
Net	2.6363652	0.045086809	2.681452	4.3042697	0.073611116	4.3778808	

		-	• • • •	_			
Figuro	15· [Jrad	Calculatione	on G	200motry	/ f∩r ⁻	Tack 2
IUUUE	10.1	Jiay	Calculations				ι ασκ Ζ

<u> Task 3 –</u>

General Setup -

The set up for this task is the same as Task 2 but in 3 dimensions. The basic dimensions and geometry is shown in Figure 16.

Figure 16: Basic Geometry and Dimensions for Task 3

Figure 17 and Figure 18 shows the adapted region of the mesh for Task 3.

Figure 17: Adapted Region of Mesh for Task 3

Figure 18: Profile View of Mesh Adaptation for Task 3

(2):

The contour plot of the velocity magnitude in the x-y plane is shown in Figure 19.

(1):

Figure 19: Velocity Magnitude in X-Y Plane Contour Plot for Task 3

The contour plot for static pressure in the x-y plane is shown in Figure 20.

Figure 20: Static Pressure in the X-Y Plane Contour Plot for Task 3

The contour plot of the x-component of velocity on a plane offset from the y-z plane by 25 cm is shown in Figure 21.

Figure 21: X-Component of Velocity on a Plane Offset of Y-Z Plane for Task 3

The calculation of the drag that the fluid exerts on the geometry is shown in Figure 22.

Forces - Direction Vector (1 0 0)							
	Forces (n)			Coefficients			
Zone	Pressure	Viscous	Total	Pressure	Viscous	Total	
fish	0.13589914	0.003716348	0.13961549	0.22187615	0.0060675069	0.22794366	
Net	0.13589914	0.003716348	0.13961549	0.22187615	0.0060675069	0.22794366	

Figure 22: Drag C	Calculations on	Geometry for	Task 3
-------------------	-----------------	--------------	--------

<u> Task 4 –</u>

General Setup -

The set up for this task is the same as Task 3 but with a user defined function for the velocity inlet. The basic dimensions and geometry is shown in Figure 16.

The user defined function is shown below:

```
#include "udf.h"
DEFINE_PROFILE(inlet_x_velocity, thread, position)
{
real x[ND_ND];
real y;
real z;
real rad = 0.6;
real v_max=2*.10;
face tf;
begin_f_loop(f, thread)
{
F_CENTROID(x,f,thread);
y = (x[1]);
z = (x[2]);
F_PROFILE(f, thread, position) = 2*10 - y*y/(rad*rad)*2*10 - z*z/(rad*rad)*2*10;
}
end_f_loop(f, thread)
}
```

The contour plot of the velocity magnitude in the x-y plane is shown in Figure 23.

Figure 23: Velocity Magnitude in X-Y Plane Contour Plot for Task 4

The contour plot for static pressure in the x-y plane is shown in Figure 24.

Figure 24: Static Pressure in the X-Y Plane Contour Plot for Task 4

The contour plot of the x-component of velocity on a plane offset from the y-z plane by 25 cm is shown in Figure 25.

The contour plot of the x-component of velocity on a plane parallel to the y-z plane at the inlet is shown in Figure *26*.

Figure 26: X-Component of Velocity on a Plane Offset of Y-Z Plane at Inlet for Task 4

The calculation of the drag that the fluid exerts on the geometry is shown in Figure 27.

Forces - Direction Vector (100) Forces (n) Coefficients							
Zone fish	Pressure 0.38167635	Viscous 0.011657173	Total 0.39333352	Pressure 0.62314505	Viscous 0.019032119	Total 0.64217717	
Net	0.38167635	0.011657173	0.39333352	0.62314505	0.019032119	0.64217717	

Figure 27: Drag Calculations on Geometry for Task 4