## Task 1

## Deliverables

(a)
(1) An estimate of the Reynold's number of the system.

$$
R e=\frac{\rho V D}{\mu}=\frac{\left(780 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.006 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.2 \mathrm{~m})}{\left(0.0024 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}\right)}=390
$$

(2) Contour plots of (i) velocity magnitude, (ii) y-component of velocity, and (iii) static pressure.


Figure 1: Velocity Magnitude


Figure 2: Velocity in the $y$-component


Figure 3: Static Pressure
(3) Line plots of the x -component of velocity along the vertical lines $\mathrm{x}=50 \mathrm{~cm}$ and $\mathrm{x}=150 \mathrm{~cm}$.


Figure 4: Velocity Along $x=50 \mathrm{~cm}$


Figure 5: Velocity Along $x=150 \mathrm{~cm}$
(b)
(1) An estimate of the Reynold's number of the system.

$$
R e=\frac{\rho V D}{\mu}=\frac{\left(998.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.0003 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.2 \mathrm{~m})}{\left(0.001003 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}\right)}=59.8740
$$

(2) Contour plots of (i) velocity magnitude, (ii) y-component of velocity, and (iii) static pressure.



Figure 6: Velocity Magnitude

[ $\mathrm{m} \mathrm{s}^{\wedge}-1$ ]



Figure 7: Velocity in the $y$-component

$0 \int_{0.250}^{0.050} \underbrace{1.000(m)}_{0.350}$
Figure 8: Static Pressure
(3) Line plots of the x -component of velocity along the vertical lines $\mathrm{x}=50 \mathrm{~cm}$ and $\mathrm{x}=150 \mathrm{~cm}$.


Figure 9: Velocity Along $x=50 \mathrm{~cm}$


Figure 10: Velocity Along $x=150 \mathrm{~cm}$

## Task 2

## Deliverables

(1) Contour plots of (i) velocity magnitude, (ii) stream function, and (iii) static pressure.


Figure 11: Velocity Magnitude


Figure 12: Stream Function


Figure 13: Static Pressure
(2) Contributions of lift by pressure and viscosity.

Table 1: Lift Forces

| Lift (N) |  |
| :--- | :---: |
| Pressure | -8.0011 |
| Viscous | 0.0021 |
| Total | -7.9990 |

(3) Contributions of drag by pressure and viscosity.

Table 2: Drag Forces

| Drag (N) |  |
| :--- | :---: |
| Pressure | 2.4855 |
| Viscous | 0.0317 |
| Total | 2.5166 |

## Task 3

## Deliverables

(1) Mesh of the system.


Figure 14: Mesh of the Model
(2) Contour plots of (i) velocity magnitude on the $x-y$ plane, (ii) static pressure on the $x-y$ plane, and (iii) x -component of velocity on the vertical plane at $\mathrm{x}=25 \mathrm{~cm}$.



Figure 15: Velocity Magnitude
$6.295 \mathrm{e}+001$
$4.933 \mathrm{e}+001$
$3.570 \mathrm{e}+001$
$2.207 \mathrm{e}+001$
$8.446 \mathrm{e}+000$
$-5.181 \mathrm{e}+000$
$-1.881 \mathrm{e}+001$
$-3.243 \mathrm{e}+001$
$-4.606 \mathrm{e}+001$
$-5.969 \mathrm{e}+001$
$-7.332 \mathrm{e}+001$
$[\mathrm{~Pa}]$


Figure 16: Static Pressure


Figure 17: Velocity at $x=25 \mathrm{~cm}$
(3) Calculation of the drag on the whole "fish".

Table 3: Drag Forces

| Drag (N) |  |
| :--- | :---: |
| Pressure | 0.1959 |
| Viscous | 0.0121 |
| Total | 0.2080 |

Task 4
Deliverables
(1) Contour plots of (i) velocity magnitude on the $x-y$ plane, (ii) static pressure on the $x-y$ plane, (iii) $x$-component of velocity on the vertical plane at $x=25 \mathrm{~cm}$, and (vi) $x$-component of velocity at the inlet and provide printout of UDF.


Figure 18: Velocity Magnitude


Figure 19: Static Pressure


Figure 20: Velocity u at $x=25 \mathrm{~cm}$


Figure 21: Velocity at the inlet
(2) Calculation of the drag on the whole "fish".

Table 4: Drag Forces

| Drag (N) |  |
| :--- | :--- |
| Pressure | 0.7615 |
| Viscous | 0.0312 |
| Total | 0.7927 |

## (3) UDF Script

\#include "udf.h"

DEFINE_PROFILE(NUV, thread, position)
\{
real x[ND_ND]; /* position vector */
real yy;
real zz;
real r;
face_t f;
begin_f_loop(f, thread)
\{

F_CENTROID(x,f,thread);
$\mathrm{yy}=(\mathrm{x}[1]) ;$
$\mathrm{zz}=(\mathrm{x}[2]) ;$
$\mathrm{r}=\operatorname{sqrt}(\mathrm{zz} * \mathrm{zz}+\mathrm{yy} * \mathrm{yy}) ;$
F_PROFILE(f, thread, position $)=2 * 10^{*}\left(1-(\mathrm{r} / .6)^{*}(\mathrm{r} / .6)\right) ;$
\}
end_f_loop(f, thread)
\}

