MAE 598

Applied Computational Fluid Dynamics

SAURABH SHIRISH PRABHU

Comment on collaboration: NO COLLABORATION

Task1 (1) : plot of the mesh on the surface of the outlet.

Task1 (2) Contour plots of temperature and velocity magnitude on the surface of outlet.
temperature contour
contour-2
Static Temperature
$3.23 e+02$
$3.22 \mathrm{e}+02$
$3.20 e+02$
3.19e+02
$3.17 \mathrm{e}+02$
$3.16 \mathrm{e}+02$
$3.14 \mathrm{e}+02$
$3.13 \mathrm{e}+02$
$3.11 e+02$
$3.10 \mathrm{e}+02$
$3.08 \mathrm{e}+02$
$3.07 e+02$
$3.05 e+02$
$3.04 e+02$
$3.02 \mathrm{e}+02$
$3.01 \mathrm{e}+02$
$2.99 \mathrm{e}+02$
$2.98 \mathrm{e}+02$
$2.96 \mathrm{e}+02$
$2.95 e+02$
$2.93 e+02$ $2.93 e+02$
velocity magnitude

Task1 (3) values of the averaged outlet temperature, Tout, and the energy flux at outlet, H
averaged outlet temperature, Tout

$\mathrm{T}_{\text {out }}=312.3637 \mathrm{~K}$
energy flux at outlet, H

$H_{\text {out }}=313369.4 \mathbf{W}$

Task2 (1) : geometry of the stretched helical pipe

Task2 (2) contour plots of temperature and velocity magnitude on the surface of outlet

Temperature contour (straight pipe)

Temperature contour (stretched pipe)

Velocity contour (straight pipe)

Velocity contour (stretched pipe)

Task2 (3) values of the averaged outlet temperature, T out, and the energy flux at outlet, H averaged outlet temperature (straight pipe) energy flux (straight pipe)

$\mathrm{T}_{\text {out }}=\mathbf{3 0 1 . 9 9 0 8} \mathbf{K}$
averaged outlet temperature (Stretched pipe)

$\mathrm{H}_{\text {out }}=305915 \mathrm{~W}$
energy flux (Stretched pipe)

$H_{\text {out }}=307704.6 \mathrm{~W}$

Comparison

Case		$\mathbf{T}_{\text {out }}(\mathbf{K})$	$\mathbf{H}_{\text {out }}(\mathbf{W})$
1.	original pipe	312.3637	313369.4
2 (1).	Straight pipe	301.9908	305915
2 (2).	Stretched pipe	312.4496	307704.6

- It can be observed that the $\mathrm{H}_{\text {out }}$ decreases as the pipe tends to become straight.
- $\mathrm{H}_{\text {out }}$ (original) $>\mathrm{H}_{\text {out }}$ (Stretched) $>\mathrm{H}_{\text {out }}$ (Straight)
- $\mathrm{T}_{\text {out }}$ (original) is approximately equal to $\mathrm{T}_{\text {out }}$ (Stretched) but $\mathrm{T}_{\text {out }}$ (Straight) is the lowest.

Task 3: Line plots of velocity magnitude along four line segments in the plane of symmetry This simulation was run on a full pipe

Appendix:

```
CODE For Task1
clc
clear all
= (10*pi)/100;
= [0:a:(10*pi)];
= 0.15/(2*pi);
= R* cos(t).
= R* cos(t)
= R* sin(t)
= 3*C*t;
plot3(X,Y,Z
fid = fopen('project2task2.txt','w')
d1=1;
%r=sqrt (( (R^2) +(C^2))*t;
for id2=1:length(t)
    fprintf(fid,'%3i %3i %7.4f %7.4f %7.4f \n',id1,id2,X(id2),Y(id2),Z(id2)
end
fclose(fid);
```

