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Project #4 
 

Collaboration Statement 

Collaborator: Anna Hu 

 

1. Boolean geometry subtraction (Tasks 2 and 3) Help was received on creating the boolean 

“subtraction” feature in geometry, necessary to 

build the complex and integrated 3D systems in 

Tasks 2 and 3 

2. Pressure/velocity effect on drag force discussion 

(Task 3b) 

The collaborators discussed the behavior of the 

systems between Task 3a and 3b in order to come 

up with an explanation for the pressure and velocity 

effects on the drag force 

3. General comparison of results (All tasks) A general comparison of results was made for all 

tasks to see if simulation results matched between 

collaborators 

4. Period/amplitude of oscillation (Task 1c) Help was needed on finding the period and 

amplitude of oscillation in Task 1c, which did not 

agree between collaborators until several runs were 

conducted 

 

Task 1 

 

(a) In this task, a simulation of water flow over a cylinder was run using a 2D system of a circular disk 

placed within the domain of the water flow, as shown below. The domain constraints were given in units 

of cm, with the left boundary being the velocity inlet of the water and the right boundary being the outlet. 

The other boundaries in the system were denoted as walls. The simulation was run using a laminar model 

and a transient solution was sought using a time step of 0.5 sec for 7200 time steps with 10 max iterations 

per time step. The unique feature in this task was that the inlet velocity was set to 0.3 cm/s in the positive 

x-direction (the direction normal to the boundary), and the transient simulation was run for a full hour 

(0.5 sec ∙ 7200 = 3600 sec = 1 hr).  

 

(i) The Reynolds number for this case was calculated based on the properties of the fluid, taken from the 

Fluent database, and the geometry of the system. The density of water and dynamic viscosity were given 

as ρ = 998.2 kg/m
3
 and μ = 0.001003 kg/m∙s, respectively. The length used in the calculation, which was 

equal to the diameter of the circular disk, was also given as d = 0.1 m. The inlet velocity of the system 

was set to U = 0.003 m/s for this case. The calculation of the Reynolds number is as follows: 

𝑅𝑒 =
𝑈𝐿𝜌

𝜇
=

(0.003 
𝑚

𝑠
)(0.1 𝑚)(998.2 

𝑘𝑔

𝑚3)

0.001003 
𝑘𝑔

𝑚∙𝑠

= 298.564  

 

A Reynolds number of 298.564 likely falls within the “transition” zone between laminar and turbulent 

flow, but is much closer to the laminar end of the spectrum than the turbulent zone. 

 

(ii) The following contour plots show the x-velocity and static pressure distributions over the flow domain 

at time t = 1 hr. As is expected, some oscillations do occur behind the cylinder, as the flow was found to 

be not perfectly laminar. 



 
Figure 1: X-Velocity at t = 1 hr 

 
Figure 2: Static Pressure at t = 1 hr 

 

(b) This task repeated the simulation in Task 1a, but with the inlet velocity changed to 2 cm/s in the 

positive x-direction, which meant a much faster inlet velocity than in the first simulation. The Reynolds 

number was expected to increase to go along with the increased flow velocity; this number is calculated 

below. The simulation was also run for a full hour, with a report file measuring values of the lift 

coefficient over the simulation, which was necessary for part (iii). 

 

(i) The Reynolds number for this case was calculated in the same manner as in Task 1a. The fluid 

remained the same, so the properties of water were left as the same: density, ρ = 998.2 kg/m
3
 and dynamic 

viscosity, μ = 0.001003 kg/m∙s. The geometry of the system did not change, so the diameter of the 

cylinder was the same at d = 0.1 m. Only the inlet velocity changed between Tasks 1a and 1b, with U = 



0.02 m/s in Task 1b. Using these parameters, the Reynolds number for this case was calculated as shown:  

𝑅𝑒 =
𝑈𝐿𝜌

𝜇
=

(0.02 
𝑚

𝑠
)(0.1 𝑚)(998.2 

𝑘𝑔

𝑚3)

0.001003 
𝑘𝑔

𝑚∙𝑠

= 1990.429  

 

This Reynolds number is much higher than in Task 1a. While it may still be within the loosely-defined 

“transition” zone between laminar and turbulent flow, it is much closer to a turbulent flow than in Task 

1a. 

 

(ii) The contour plots below mirror those in Task 1a, showing x-velocity and static pressure over the 

domain at t = 1 hr. As noted above, the oscillations, especially in the x-velocity plot, are wider than in 

Task 1a, due to the higher inlet velocity and Reynolds number. The oscillations retain the same pattern as 

in Task 1a, however, which is likely due to this simulation also being mostly within the Reynolds number 

“transition” and oscillatory period (i.e., it is not an explicitly turbulent and chaotic flow).  

 

 
Figure 3: X-Velocity at t = 1 hr 

 
Figure 4: Static Pressure at t = 1 hr 



(iii) For this simulation, a report file was also generated to monitor the lift coefficient as a function of the 

flow time as it oscillated for the duration of the hour-long simulation. The lift coefficient could then be 

plotted over the last 10 minutes of the simulation, from t = 50 min to t = 1 hr, to ensure that the 

oscillations in the lift coefficient had converged. The period and amplitude were then determined from the 

oscillations in the function as shown below: 

 

 
Figure 5: Lift Coefficient as Function of Flow Time at 50 min < t < 1 hr 

 

The period of oscillation was calculated to be around τ = 21.5 sec and the corresponding amplitude of 

oscillation was found to be A = 0.0525. 

 

(c) In this task, the simulations of Task 1b were repeated with the same inlet velocity of 2 cm/s for two 

separate runs. The unique features in each of these runs were the changes in geometry of the system’s 2D 

representation of the cylinder, from a circular disk to an ellipse. In each run, the geometry of the system 

was changed and the simulation was run using identical conditions to Task 1b. Descriptions of the 

geometrical changes for each run are described below. 

 

Run 1: In the first run, the circular disk was altered to an ellipse elongated in the y-direction, with a major 

and minor axis of 12 and 8 cm, respectively. The simulation was then run exactly as in Task 1b, including 

the report file that monitored that lift coefficient throughout the flow simulation. This lift coefficient was 

again plotted as a function of flow time for the last 10 minutes of the simulation, and the oscillations were 

compared to those produced in Task 1b. 

 



 
Figure 6: Lift Coefficient as Function of Flow Time at 50 min < t < 1 hr 

The period of oscillation was calculated to be around τ = 23 sec for this case, and the amplitude of 

oscillation was determined to be A = 0.0733. Both the period of oscillation and the amplitude were found 

to be higher than those of the circular cylinder in Task 1b. A possible explanation for these results could 

be due to the orientation of the ellipse, as an ellipse elongated in the y-direction would have a greater 

external cross-sectional area in the path of the fluid flow.  

Run 2: In the second run, the same setup as in Task 1b was again used, with the inlet velocity also set as 

2 cm/s. For this case, however, the 2D circular disk was converted into an ellipse elongated in the x-

direction, with major and minor axes equal to 12 and 8 cm, respectively. The lift coefficient was again 

monitored as a function of flow time, and the last 10 minutes of the simulation are plotted below. Overall, 

this run was performed exactly as Run 1, but the orientation of the ellipse was changed from the major 

axis in the y-direction (Run 1) to in the x-direction (Run 2). The period and amplitude of oscillation could 

again be determined and compared to those in Task 1b and Run 1 of Task 1c. 

 
Figure 7: Lift Coefficient as Function of Flow Time at 50 min < t < 1 hr 
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The period of oscillation was found to be approximately τ = 20 sec and the amplitude of the oscillations 

was determined to be A = 0.0125. Both the period and amplitude of oscillations in this run were found to 

be less than those found in Task 1b and, consequently, Run 1. Along the same logic as in Run 1, a 

possible explanation for the decrease in period and amplitude could be due to the orientation of the ellipse 

being elongated in the x-direction. This shape decreases the overall external cross-sectional area facing 

the fluid’s flow path, which could overall decrease the amplitude of the oscillating lift coefficient. 

Task 2 
 

In this task, a flying saucer object was placed in a tunnel filled with air, similar to the external flow of 

Task 1, but simulated with a 3D air-filled system. The dimensions of the flying saucer, given in cm, were 

provided, and the cylindrical domain of the 3D system created around it, which can be seen in the figures 

below. The saucer was “removed” from the tunnel using the unique boolean geometry tool, which 

separated the flying saucer from the tunnel and allowed Fluent to recognize it as an object in the air 

flow’s path, simulating external flow over the saucer. The left boundary was set as the velocity inlet of the 

system, while the right boundary was set as the outlet. The remaining boundaries of the domain were set 

as walls. Unlike Task 1, this simulation employed the turbulence k-epsilon model and a steady solution 

was sought, usually to 5000 iterations. The inlet velocity was set in Fluent as 50 m/s in the positive x-

direction, which equated to the direction normal to the surface of the inlet. This inlet velocity was kept 

constant even as the title angle, θ, of the flying saucer changed, which represented a rotation around the z-

axis of the saucer. Four simulations were run for four different tilt angles: θ = 0⁰, 15⁰, 30⁰, and 45⁰. 

 

(i) The number of elements and nodes were carefully monitored in this task to ensure that they did not 

exceed the maximum allowable number. The mesh was made as fine as possible given the element 

constraints. A plot of the mesh along the plane of symmetry for the case of θ = 45⁰ is shown below, 

detailing how the mesh becomes more precise around the edges of the flying saucer:  

 

 
Figure 8: System Mesh along Plane of Symmetry, θ = 45⁰ 



(ii) Contour plots of the x-velocity along the plane of symmetry were also generated for θ = 0⁰ and 45⁰ to 

show how the air’s velocity was impacted by the obstacle in its path. These contour plots also detail the 

differences in external flow depending on the tilt angle of the ship; the velocity was only mildly impacted 

when the ship was perfectly horizontal, but a large tilt in the saucer’s angle created a wide gap and 

slowing of the velocity behind the saucer. This gap appeared like an eddy behind the saucer, with the 

velocity even pointing in the negative x-direction at some locations behind the ship. 

 

 
Figure 9: X-Velocity along Plane of Symmetry, θ = 0⁰ 

 
Figure 10: X-Velocity along Plane of Symmetry, θ = 45⁰ 

 

(iii) Another way of determining how the fluid’s flow was affected by the tilt angle of the flying saucer 

was through measuring the lift and drag forces exerted on the ship at each angle. A rough distribution of 

lift and drag forces as functions of the angle could then be created. As the tilt angle of the flying saucer 

changed, it created more of a disturbance in the flow, due largely to the increase in the saucer’s external 

surface and cross-sectional area over which the flow passed with each increase in tilt angle. It was 



therefore expected that the lift and drag forces would each increase as the tilt angle of the flying saucer 

increased. For each tilt angle, the lift and drag forces were calculated in Fluent after 5000 iterations, and 

the values were combined into a table and then plotted as shown below: 

 

 

Table 1: Lift and Drag Forces for Each θ 

Tilt Angle 0⁰ 15⁰ 30⁰ 45⁰ 

Lift Force 21.095 N 117.781 N 140.628 N 121.396 N 

Drag Force 10.629 N 27.717 N 87.043 N 174.398 N 

 

 
Figure 11: Lift and Drag Forces as Functions of Tilt Angle θ 

 

As hypothesized, the lift and drag forces did increase with increasing tilt angle in general, but there 

reached a point in the saucer’s tilt where the drag force acting on the ship was larger than the lift force. 

This shift, according to the above plot, occurred somewhere between the 30⁰ and 45⁰ tilt angles, when the 

lift and drag forces equaled each other and then traded places. 

 

Task 3 
 

(a) Similar to the simulation in Task 2, this task simulated a pentagon-shaped building in a wind tunnel 

using a 3D geometrical domain filled with air. The building was placed on the “ground” of the rectangular 

domain, in the center, and the left boundary condition was set as the velocity inlet while the right 

boundary condition was set at the outflow. The remaining surfaces were labeled as walls. The inlet 

velocity was set to 50 m/s in the positive y-direction, which equated to the direction normal to the surface 

of the inlet. This flow inlet was directed towards a flat edge of the pentagon building, which can be seen 

in the contour plots below. The turbulence k-epsilon model was used for the simulation and a steady 

solution was sought after 5000 iterations. 
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(i) The contour plots shown below detail the steady pressure and y-velocity distributions along a 

horizontal place created with z = 0.5 m. This equated to a plane that cut through the middle of the 

building and showed the distributions looking down on the top of the building. 

 

 
Figure 12: Static Pressure along Horizontal Plane, z = 0.5 m 

 
Figure 13: Y-Velocity along Horizontal Plane, z = 0.5 m 

 

(ii) The following contour plot shows the y-velocity distribution along the plane of symmetry, which 

equated to a side-view y-velocity distribution, as if looking at the building from the side. Similar to the 



slower y-velocity and eddying behind the building in Figure 13, the velocity slows and even moves in the 

negative y-direction in the contour plot shown below: 

 

 
Figure 14: Y-Velocity along Plane of Symmetry 

 

(iii) The value of the total drag force exerted on the building by the fluid was also calculated in Fluent for 

this simulation. The drag force is composed of two different terms, a pressure term and a viscous term. 

Each of these contributes to the overall total drag force as shown below: 

 

Total drag force = 930.627 N 

Pressure term contribution = 927.666 N 

Viscous term contribution = 2.962 N 

 

It can be seen that the viscous term contributes much less to the overall drag force exerted on the building. 

This makes sense, given that the flow was assumed turbulent (turbulence k-epsilon model was used) and 

the pressure term dominates over the viscous term in this turbulent model.  

 

(b) In this simulation, the same construction was used, but the wind tunnel was directed at one of the 

pentagon’s vertices instead of one of the flat sides. This simulation was achieved simply by switching the 

“velocity-inlet” and “outflow” boundaries on the existing geometry and switching the direction of the 

inlet velocity of 50 m/s to be pointing in the negative y-direction, which is the direction normal to the 

surface of the inlet. For this reason, while the contour plots below are oriented to match the orientation of 

the contour plots in Task 3a, the coloring is reversed to indicate the negative y-direction inlet velocity. 

 

(i) As in Task 3a, contour plots of steady pressure and y-velocity were created along a horizontal plane 

with z = 0.5 m. This plane was exactly identical to that used in Task 3a (i). As noted above, the color 

distribution for the y-velocity contour plot was reversed from that used in Task 3a due to the change in y-



direction inlet velocity. As can be seen from the color distribution, the inlet velocity was set to -50 m/s in 

the y-direction, or 50 m/s in the negative y-direction. As the geometry of the system was left unchanged 

and only the boundary conditions were named differently, this meant that the inlet flow velocity had to be 

reversed to direct the air flow towards the vertex of the pentagon building. Once again, the slowing 

behind the structure and eddying y-velocity immediately behind it are noted. 

 

 
Figure 15: Static Pressure along Horizontal Plane, z = 0.5 m 

 
Figure 16: Y-Velocity along Horizontal Plane, z = 0.5 m 

 

(ii) The following contour plot details a “side-view” distribution of y-velocity over the plane of 

symmetry. As in the previous plot, the color distribution on the plot reflects the reversed inlet velocity of 

50 m/s in the negative y-direction. The coordinates originally used to create the structure meant that the 



velocity must be negative to point the flow at one of the building’s vertices. The following contour plot 

also shows the interesting slowing and eddying or velocity stagnation directly behind the structure, as was 

seen in the corresponding plots in Task 3a. 

 

 
Figure 17: Y-Velocity along Plane of Symmetry 

 

(iii) As in Task 3a, the total drag force was computed in Fluent along with the pressure and viscous 

contributions to the drag force. The total drag force and its breakdown into the contributions from each 

term are as follows: 

 

Total drag force = 1379.030 N 

Pressure term contribution = 1378.102 N 

Viscous term contribution = 0.928 N 

 

The viscous term contribution to the total drag force in this turbulently-modeled system is once again 

dominated by the pressure term’s contribution. However, when comparing the results of the drag force 

calculations in Tasks 3a and 3b, it can be seen that differences in the pressure and velocity structures due 

to the change in the building’s geometrical structure affect the drag force in each case. While the 

decomposition of pressure and viscous terms between Tasks 3a and 3b were comparable, with the 

pressure contribution largely dominating the viscous contribution in each case, the overall value of the 

drag force was calculated to be much higher when the flow encountered the building’s vertex instead of 

its flat side. The increased drag force in Task 3b was likely due to a number of different explanations. 

First, the maximum value of static pressure was larger at the pentagon’s vertex (3b) than at the pentagon’s 

edge (3a). This is because the first point of contact the flow runs into in the second simulation was the 

vertex of the pentagon, which has a much smaller cross-sectional area than the edge of the building, and 

pressure is equal to force divided by the area (↓ area, ↑ pressure). Therefore, the magnitude of pressure 

distribution at the left half of the building was much larger in Task 3b than the left half of the building in 

Task 3a. Secondly, the external surface area over which the flow passed was much greater in Task 3b than 

in Task 3a, as the slanted edges of the building also acted as impediments to the fluid’s flow. This 

decreased the velocity around the edges of the building’s slants and increased the “eddying” velocity 



behind the building when compared to the contour plots in Task 3a, which increased the drag force very 

similarly to the behavior of the flying saucer at a tilt angle of 45⁰ in Task 2 (which also resulted in a very 

high increase in drag force). For these reasons, the drag force in Task 3b was found to be greater than in 

Task 3a, with the pressure term contribution also playing a larger role in the overall drag force. 


