MAE 598
 Applied CFD
 Project \# 2

Zarvan Damania

Task 1

(a)

Setup

For this problem Gravity is enabled in the Y-direction and its value is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. The time is used as transient. The mesh used is Fine.

Since two phases are used Water and Engine oil, we switch on multiphase and insert the Number of Phases as 2. The task uses turbulent flow k-epsilon.

Engine oil is used as phase-1 and water-liquid is used as phase-2.

We have to use two phases on the same geometry. To use two phases we have to define the region in which water (phase-2) is filled and the region that is filled with engine oil (phase-1). From the question we have been given the co-ordinates for the region of Water. We input the coordinates and mark the region.

We initialize the solution and patch the phase－2 with Volume Fraction 1 for the region that we created．
\ominus
\ominus
-G General
-G General
}-.品Models
}-.品Models
|}\mathrm{ Materials
|}\mathrm{ Materials
Clll Zone Conditions
Clll Zone Conditions
7% Boundary Conditions
7% Boundary Conditions
6] Dynamic Mesh
6] Dynamic Mesh
Reference Values
Reference Values
G
G
8. Solution Methods
8. Solution Methods
* Solution Controls
* Solution Controls
Monitors
Monitors
-
-
it=0}\mathrm{ Solution Initialization
it=0}\mathrm{ Solution Initialization
(+) 苜 Calculation Activities
(+) 苜 Calculation Activities
/ Run Calculation
/ Run Calculation
Results
Results
(1)}9\mathrm{ Graphics
(1)}9\mathrm{ Graphics
+m Animations
+m Animations
\oplus`, Plots \oplus`, Plots
\# Reports
\# Reports
\& Parameters \& Customization
\& Parameters \& Customization

The calculation is run with time step $\mathbf{0 . 0 1}$ and for $\mathbf{1 0 0 0}$ number of time steps where the data is saved after every 200 time steps to get the solution for 2,6 and 10 seconds．

Setup
目 General
㫛 Models
8 Materials
\square Cell Zone Conditions
局 \ddagger Boundary Conditions
（3）Dynamic Mesh
Reference Values
Solution
© Solution Methods
Solution Controls
D Monitors
$\mathrm{t}_{\mathrm{t}=0}$ Solution Initialization
国 Calculation Activities
澚 Run Calculation
Results
9 Graphics
PIM Animations
乞 Plots
（ Reports
（－）Parameters \＆Customization

Results

Time $=6$ seconds
Time $=10$ seconds

[^0]

Contours of Volume fraction (phase-1) (Time=1.0000e+01)

Task 1

(b)

The value of x was found using the tool probe in result. The probe was used to find the x coordinate where the leading edge of water mixes with engine oil. The values of all 5 data points were inserted in excel and a scattered plot was generated using the values of x and t . Using the tools in excel linear least-square and the slope of the line was found.

The value of $\Delta \mathrm{x}$ is the length 2 m divided by the number of cells in the horizontal direction created during the meshing process (61 cells).

The value of $\boldsymbol{\Delta x}=\mathbf{0 . 0 3}$
The value of Δt is the number of time step size
The value of $\Delta t=\mathbf{0 . 0 1}$

The equation of line is $y=0.3611 x+0.7189$ which represents $y=m x+c$ and m is the value of the slope which is the value of the velocity U .

The value of U is $0.3611 \mathrm{~m} / \mathrm{s}$
The Courant number, $\mathrm{C} \sim \mathrm{U} \Delta \mathrm{t} / \Delta \mathrm{x} \sim(0.3611 * 0.01) / 0.03$
The Courant number, $\mathbf{C} \boldsymbol{\sim} \mathbf{0 . 1 2 0 3 6 6 6 6 7}$

The Courant Number is less than 1.

Task 1

(c)

Result

[^1]Contours of Volume fraction (phase-1) (Time $=6.0000 \mathrm{e}+00$)

Time $=10$ seconds

[^2]From (a) we know that the flow is turbulent. In turbulent flow, unsteady vortices appear on many scales and interact with each other. Drag due to boundary layer skin friction increases. At 0 seconds the height of the water is at 0.8 m and its center of mass is around 0.3 m on the x -axis and 0.4 on the y-axis. When the water hits the other wall after 10 seconds and rebounds it can be seen from the plots that the height of the water level has dropped below 0.8 m since its center of mass has dropped. This is because the energy has been dissipated due to friction.

From (c) we know that the flow is inviscid. Inviscid flow has no friction and therefore no energy is dissipated. From the Plots we can see that after 10 seconds when the water rebounds from the other wall, the height of the water almost remains the same.

Task 2

Air is used as phase-1 and water-liquid is used as phase-2.

We define the Boundary conditions for the inlet and outlet. Velocity $.25 \mathrm{~m} / \mathrm{s}$ and $.5 \mathrm{~m} / \mathrm{s}$ is used for the first and second case respectively in the X-direction. The Phase-2 volume fraction is used as 1 for the Velocity-Inlet.

The calculation is run with time step $\mathbf{0 . 0 0 5}$ and for $\mathbf{2 0 0}$ number of time steps for $\mathbf{1}$ second.

Results

a)

Contours of Volume fraction (phase-1) $\quad($ Time $=1.0000 \mathrm{e}+00)$
b)

$$
V_{\text {inlet }}=0.5 \mathrm{~m} / \mathrm{s}
$$

Contours of Volume fraction (phase-1) (Time $=1.0000 \mathrm{e}+00$)

Task 3

Air is used as phase-1 and Methane is used as phase-2.

We define the Boundary conditions for the inlet and outlet. $\mathrm{V}_{\text {inlet }}=0.25 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}_{\text {inlet }}=.5 \mathrm{~m} / \mathrm{s}$ is used for the first and second case for velocity-inlet-2 respectively in the X -direction. The $\mathrm{V}_{\text {inlet }}=$ $5 \mathrm{~m} / \mathrm{s}$ is used for velocity-inlet-1 in the Y-direction The Phase-2 volume fraction is used as 1 for the Velocity-Inlet-1. Volume fraction is 0 for phase-2 at velocity-inlet-2.

The calculation is run with time step $\mathbf{0 . 0 1}$ and for $\mathbf{1 0 0 0}$ number of time steps for $\mathbf{1 0}$ seconds and calculation is run with time step $\mathbf{0 . 0 1}$ and for $\mathbf{2 0 0 0}$ number of time steps for 20 seconds.

Results

a)

Velocity $=0.25 \mathrm{~m} / \mathrm{s} \mathrm{t}=10$ seconds

Contours of Volume fraction (phase-1) (Time=1.0000e +01)
b)

Velocity $=0.5 \mathrm{~m} / \mathrm{s} \mathrm{t}=10$ seconds

$1.50 \mathrm{e}-01$
$1.00 \mathrm{e}-01$
$5.00 \mathrm{e}-02$
$0.00 e^{+}+00$

[^3]Contours of Volume fraction (phase-1) $\quad($ Time $=2.0000 \mathrm{e}+01$)

Velocity $=0.25 \mathrm{~m} / \mathrm{s} \mathrm{t}=20$ seconds

Velocity $=0.5 \mathrm{~m} / \mathrm{s} \mathrm{t}=20$ seconds

Contours of Volume fraction (phase-1) (Time $=2.0000 \mathrm{e}+01$)

Task 4

In this case three phases are used. Air is used as phase-1, water-liquid is used as phase-2 and engine oil is used as phase-3

We have to use three phases on the same geometry. To use three phases we have to define the region in which water (phase-2) is filled and the region that is filled with engine oil (phase-1) rest of the region is filled with air (phase-1). From the question we have been given the co-ordinates for the region of Water and Engine-oil. We input the co-ordinates and mark the region. Region-1 is for water and the Region-2 is for engine oil.

A plot of the volume fraction of phase-1 would not properly show the distribution of the three phases, since the areas covered by both phase- 2 and phase- 3 will have zero values. For example, Custom Field Function is used

$$
\boldsymbol{C F}=0.1^{*} \mathrm{VF} 1+0.2^{*} \mathrm{VF} 2+0.3^{*} \mathrm{VF} 3,
$$

VFn is the volume fraction of the n-th phase, the contour plot of $\mathbf{C F}$ will have the values of 0.1 , 0.2 , and 0.3 for the areas covered by phase- 1 , phase- 2 , and phase- 3 .

We initialize the solution and patch the phase-2 with Volume Fraction 1 for the Region 1 and phase-2 with Volume Fraction 0 for the Region 2. We also patch the phase-3 with Volume Fraction 1 for the Region 2 and phase-3 with Volume Fraction 0 for the Region 1.

The calculation is run with time step $\mathbf{0 . 0 1}$ and for $\mathbf{8 0 0}$ number of time steps where the data is saved after every 100 time steps to get the solution for 1,4 and 8 seconds.

H:Task 4 Fluent@EN4056194150.fulton.ad.asu.edu [2d, pbns, vof, rke, transient] [ANSYS Academic Reseal
File Mesh Define Solve Adapt Surface Display Report Parallel View Help

Time $=0$ second

Contours of custom-function-0 (mixture) (Time $=0.0000 \mathrm{e}+00$)

Time $=4$ seconds

Contours of custom-function-0 (mixture) (Time $=4.0000 \mathrm{e}+00$)

Time $=1$ second

Contours of custom-function-0 (mixture) (Time $=1.0000 \mathrm{e}+00$)

Time $=8$ seconds

Contours of custom-function-0 (mixture) (Time $=8.0000 \mathrm{e}+00$)

From the plots we can see that at 0 seconds both the water and the engine oil are in their respective regions. When they start mixing, since the density of engine oil is les than the density of water it floats on top of the water. Therefore we can see that the red color, which is the engine oil, is on top of the green color, which is water. Moreover from the plots we can see that the green color goes up to the end while the red color just goes up to $3 / 4^{\text {th }}$ of the region in 8 seconds, this is because the viscosity of water is less than engine oil therefore water mixes to a great extent than that of engine oil.

[^0]: Contours of Volume fraction (phase-1) (Time $=6.0000 \mathrm{e}+00$)

[^1]: Contours of Volume fraction (phase-1) (Time $=2.0000 \mathrm{e}+00$)

[^2]: Contours of Volume fraction (phase-1) (Time=1.0000e+01)

[^3]: Contours of Volume fraction (phase-1) (Time $=1.0000 \mathrm{e}+01$)

