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Basic Examples for Matlab



Part 1. Write your first Matlab program

Ex. 1 Write your first Matlab program

a = 3;
b = 5;
c = a+b

Output:

8

Remarks: (1) The semicolon at the end of a statement acts to suppress output (to keep 
the program running in a "quiet mode").   (2) The third statement, c = a+b, is not 
followed by a semicolon so the content of the variable c is "dumped" as the output.  

Ex. 2 The meaning of "a = b"

In Matlab and in any programming language, the statement "a = b" does not mean 
"a equals b". Instead, it prompts the action of replacing the content of a by the 
content of b.  

a = 3;
b = a;
b

Output:

3

Remark: Think of the two "variables" a and b as two buckets labeled "a" and "b".  The 
first statement puts the number 3 into bucket a.  The second statement puts the content 
of bucket a into bucket b, such that we now have "3" in bucket b.  (The content of 
bucket a remains unchanged after this action.) The third statement dumps the content of 
bucket b so the final output is "3".
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Ex. 3  Basic math operations

a = 3;
b = 9;
c = 2*a+b^2-a*b+b/a-10

Output:

53

Remark: The right hand side of the third statement includes all 4 of the basic arithmetic 
operators, + (addition), - (subtraction), * (multiplication), and / (division), in their usual 
meaning.  It also includes the symbol, ^, which means "to the power of", so "b^2" means 
(the content of b) to the power of 2, i.e., 92 = 81.  The right hand side of that statement is 
first evaluated: r.h.s. = 2 x 3 + 92 - 3 x 9 + 9/3 - 10 = 53.  The content of r.h.s., now 53, 
is then assigned to the variable c in the left hand side. Since this statement is not 
followed by a semicolon, the content of c is dumped as the final output. 

Ex. 4 The meaning of "a = b", continued

a = 3;
a = a+1;
a

Output:

4

Remark: The value of the variable a is 3 after the first statement. In the second 
statement, the right hand side is first evaluated to be 3+1 = 4.  This value is then used to 
replace the old content of a, so a becomes 4 instead of 3. 

Ex. 5  Formatted output

fprintf('Hello')

Output:

Hello
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Ex. 6  Formatted output

a = 3;
b = a*a;
c = a*a*a;
d = sqrt(a);
fprintf('%4u square equals %4u \r', a, b)
fprintf('%4u cube equals %4u \r', a, c)
fprintf('The square root of %2u is %6.4f \r', a, d)

Output:

    3 square equals    9
    3 cube equals    27
 The square root of  3 is 1.7321

Remarks: The command "fprintf" is for formatted output, using the format specified in 
the first string '...' in the parentheses.  The "%4u" (4-digit integer) and "%6.4f" (real 
number that preserves 4 digits to the right of the floating point) are the format for the 
variable(s) for output.  The "sqrt" in the 4th statement is the intrinsic function for square 
root.

Ex. 7 Arrays

a = [3  6  7];
b = [1  9  4];
c = a + b

Output:

4  15  11

Remarks: (1) Both a and b are given as a three-element array. In the third line, the 
operation of "a+b" results in element-by-element addition
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Ex. 8  Extracting an individual element of an array

a = [3  6  7];
b = [1  9  4  5];
c = a(2) + b(4)

Output:

c = 11

Remark: If b is a one-dimensional array, b(n) is the n-th element of that array.  Since 
a(2) is 6 and b(4) is 5, the 3rd statement leads to c = 6+5 = 11.

Ex. 9  Comment 

%
% This program demonstrates how to "comment out" 
% a segment of code
%
A = 3;
B = A*A;
% 
% B = 2*B   <--- This statement is not executed 
%
C = A+B

Output:

c = 12

Ex. 10 Continuation to next line

summation1 = 1 + 3 + 5 + 7 ...
 + 9 + 11

Note: The three periods (...) allow continuation to the next line of commands. The two 
lines in the above example are essentially one line of "summation1 = 1+3+5+7+9+11".
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Ex. 11 "Clear" a variable

c1 = 3;
c2 = c1+5;
clear c1
c1

Output:

??? Undefined function or variable 'c1'.

Remarks: We see an error message because the variable "c1" no longer exists. It is 
purged from the computer memory by the "clear" command.  Note that the command 
does not just act to delete the content of a variable, but it kills the variable outright.  The 
3rd statement can be useful if c1 is a big array that occupies a lot of memory but is no 
longer needed for the rest of the program.  The 3rd statement only kills c1, while c2 (= 
8) still exists.  A "clear" command not followed by any variable will kill all variables.

Ex. 11 Intrinsic math functions and constants

x = pi;
y = sin(pi/2)
z = exp(-sin(pi/2))

Output:

y = 1
z = 0.3679

Remarks: "pi" (= 3.14159...) is a reserved intrinsic constant. A function within a 
function is allowed. The innermost function will be evaluated first, so the 3rd statement 
leads to z = exp(-1) = 0.3679.

Ex. 12  Naming a variable

(i) Matlab variables are case sensitive. For example, "ASU" and "asu" are two different 
variables.  (ii) An underscore (_) or a number (0-9) can also be part of the name of a 
variable. For example, "MAE_384" is a legitimate variable name.  (iii) Some names are 
reserved for special constants. For example (see Ex. 11), "pi" is an intrinsic constant 
with a fixed value of 3.14159...

6



Ex. 13 Making a quick plot

x = [0:0.1:20];
y = sin(x);
plot(x,y)

The outcome will be the following plot:

Remarks: This only serves as a very quick example of what Matlab can do in making 
plots. will have more detailed discussions on the use of arrays and Matlab's graphic tools 
in later lectures.  The first line is equivalent to x = [0 0.1 0.2 0.3 ...  19.8 19.9 20]. It 
assigns the content of x which is an array of 201 elements.  The "0:0.1:20" means the 
201 numbers are evenly spaced. They start from 0 and end at 20 with an increment of 
0.1. The second line gives the content of the new array, y, as

       y = [sin(x(1))  sin(x(2))  sin(x(3)) ...  sin(x(200))  sin(x(201))] ,  
or
       y = [sin(0)  sin(0.1)  sin(0.2) ... sin(19.9) sin(20)] .

The 3rd line makes a plot of y vs. x.
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Part 2. Basic looping 

1. The for loop

Ex. 14  Loop: Using for command

b = 3;
for k = 1:5
 b 
end

Output:

3
3
3
3
3

Remark: The blue-colored segment in lines 2-4 forms a "for-loop". The statement 
sandwiched between "for k = 1:5" and "end" is repeated 5 times, with the "k" index 
going from 1 to 5 step 1.  

Ex. 15 For loop: Utility of the dummy index

b = 3;
for k = 1:5
 b^k
end

Output:

3
9
27
81
243

Remark: The outputs are 3^1, 3^2, 3^3, 3^4, and 3^5. the value of "k" keeps changing as 
we go through the loop
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Ex. 16 For loop: More on the dummy index

sum1 = 0;
for k = 1:9
  sum1 = sum1+k;
end
sum1

Output:

45

Remark: this program performs the summation of 1+2+3+4+5+6+7+8+9 (= 45).

Ex. 17 For loop: More on the dummy index

sum1 = 0;
for k = 1:2:9
  sum1 = sum1+k;
end
sum1

Output:

25

Remark: this program performs the summation of 1+3+5+7+9 (= 25). The command
"for k = 1:2:9" means we go through the loop only 5 times. First time with k = 1, second 
time with k = 1+2 (=3), third time with k = 1+2+2 (=5), and so on. The looping stops 
once k reaches 9.
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Ex. 18 Treatment of array within a loop

b = [3  8  9  4  7  5];
sum1 = 0;
for k = 1:4
  sum1 = sum1+b(k);
end
sum1

Output:

24

Remark: This program performs the summation of sum1 = b(1)+b(2)+b(3)+b(4) = 
3+8+9+4 = 24

Ex. 19 Treatment of array within a loop

b = [3  8  9  4  7  5];
sum1 = 0;
for k = 1:2:5
  sum1 = sum1+b(k);
end
sum1

Output:

19

Remark: This program performs the summation of sum1 = b(1)+b(3)+b(5) = 3+9+7 = 19

10



Ex. 20  Double loop

sum1 = 0;
for n = 1:2
   for m = 1:3
      sum1 = sum1+n*m;
   end
end
sum1

Output:

16

Remark: this program performs the summation of
Sum1 = 1*1+1*2+1*3 +2*1+2*2+2*3 = 16

Ex. 21  Double loop

for n = 1:2
   for m = 1:3
      fprintf('n = %3u  m = %3u \r', n, m)
   end
end

Output:

   n = 1    m = 1
   n = 1    m = 2
   n = 1    m = 3
   n = 2    m = 1
   n = 2    m = 2
   n = 2    m = 3

11



Ex. 22 More complicated use of loop and index

b = [2  5  7  4  9  8  3];
c = [2  3  5  7];
sum1 = 0;
for k = 1:4
   sum1 = sum1+b(c(k));
end
sum1

Output:

24

Remark: This program performs the summation of
sum1 = b(c(1))+b(c(2))+b(c(3))+b(c(4))
         = b(2)+b(3)+b(5)+b(7)
         = 5+7+9+3
         = 24
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Part 3. Basic branching

Ex. 23  The if command

num1 = 7;
if (num1 > 5)
    fprintf('%4u is greater than 5 \r', num1)
else
    fprintf('%4u is less than or equal to 5 \r', num1)
end

Output:

   7 is greater than 5

Same program, but change first line to "num1 = 3;"

Output:

   3 is less than or equal to 5

Remark: In this program, if (num1 > 5) (num1 is greater than 5) is true, the statement
"fprintf('%4u is greater than 5 \r', num1)" is executed. Otherwise, the statement 
"fprintf('%4u is less than or equal to 5 \r', num1)" is executed.

Ex 24  if - elseif - else  (This example is self-explanatory. Try to change the given value 
of num1 and observe the outcome.)

num1 = 4;
if (num1 >= 5)
    fprintf('%4i is greater than or equal to 5 \r', num1)
elseif (num1 > 1)
    fprintf('%4i is less than 5 but greater than 1 \r', num1)
elseif (num1 == 1)
    fprintf('%4i equals 1 \r', num1)
elseif (num1 > -3)
    fprintf('%4i is less than 1 but greater than -3 \r', num1)
else
    fprintf('%4i is less than or equal to -3 \r', num1)
end
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Ex 25 An application - determine whether a given year is a leap year (try to change the 
given value of nyear and observe the outcome)

nyear = 1975;
if (mod(nyear, 400) == 0)
   fprintf('%6u is a leap year', nyear)
elseif (mod(nyear,4) == 0) & (mod(nyear,100) ~= 0) 
   fprintf('%6u is a leap year', nyear)
else
   fprintf('%6u is not a leap year', nyear)
end

Output:

   1975 is not a leap year

Remarks: 

(1) In the elseif command (4th line), "&" means "AND".  Both statements 
"(mod(nyaer,4) == 0)" and "(mod(nyear,100) ~= 0)" have to be true for Matlab to 
execute the command, "fprintf('%6u is a leap year', nyear)".  Also commonly used in an 
if statement is "|" (a vertical line), which means "OR".

(2) The symbols "~=" in line 4 means "NOT EQUAL TO".  There are 6 commonly used 
expressions to compare two numbers in an if command:

     A > B            A is greater than B
     A < B            A is less than B
     A >= B          A is greater than or equal to B
     A <= B          A is less than or equal to B
     A == B          A equals B
     A ~= B          A does not equal B

(3) The "mod(A,B)" function returns the remainder of A divided by B. For example, 
mod(7,2) = 1, mod(10,4) = 2, and mod(25,5) = 0.  If A is divisible by B, mod(A,B) = 0. 
This is a very useful function in many applications related to numerical methods.
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Ex 26  Combine looping and branching

sum1 = 0; 
sum2 = 0;
N = 9
for k = 1:N
   sum1 = sum1+k;
   if (mod(k,3) == 0)
      sum2 = sum2+k;
   end
end
sum1
sum2

Output:

sum1 = 45
sum2 = 18

Remark: Sum1 = 1+2+3+4+5+6+7+8+9, while sum2 = 3+6+9. 

Ex 27 The while loop

x = 3;
while (x < 100)
   x = x*3;
end
x

Output:

x = 243

Remark: One can think of a while loop as a combination of a for loop and an if 
statement. Here, the looping will keep going indefinitely as long as the condition,
(x < 100), is satisfied.  Therefore, the value of x progresses from 3, 9, 27, 81, to 243 
when the loop is terminated.
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Part 4. Array and Matrix

1. Assign the content of an array/matrix; Basic operations

Ex. 28  Assign the content of a (one-dimensional) array; Addition of two arrays

a = [2 12 25];
b = [3 7 4];
c = a+b

Output:

c = 5  19  29

Ex. 29 Assign the content of a matrix; Addition of two matrices

a = [3 4; 1 6];
b = [5 2; 11 7];
c = a+b

Output:

c =    8    6
       12   13

This program performs the following acts:

    a = [3 4
1 6 ]  

     b = [ 5 2
11 7 ]

      c = a  b = [ 8 6
12 13 ]      

16



Ex. 30  Multiplication involving a scalar and an array (or a matrix)

a = [3 5; 1 4];
b = 2*a

Output:

b =   6   10
        2     8

Ex. 31  Element-by-element multiplication involving two 1-D arrays or two matrices of 
the same dimension

a = [2 3 5];
b = [2 4 9];
c = a.*b

Output:

c = 4   12   45

Remark: The period preceding the mathematical operation, "*", indicates that the 
operation will be performed element-by-element. In this case, the content of c is

c = [a(1)*b(1)  a(2)*b(2)  a(3)*b(3)]

Also, c is automatically assigned as a 1-D array with 3 elements

Ex. 32 Element-by-element multiplication of two matrices

a = [2 3; 1 4];
b = [5 1; 7 2];
c = a.*b

Output:

c = 10   3
        7   8
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Ex. 33  Direct (not element-by-element) multiplication of two matrices

a = [2 3; 1 4];
b = [5 1; 7 2];
c = a*b

Output:

c = 31   8
      33   9

Remark: Observe how the outcome of this example differs from Ex. 32.

Ex. 34 Elementary functions with a vectorial variable

a = [2 3 5];
b = sin(a)

Output:

b = 0.9092   0.1411   -0.9589

Remark: The content of b is [sin(2)  sin(3)  sin(5)].

Ex. 35 Another example of elementary functions with a vectorial variable

a = [2 3 5];
b = 2*a.^2+3*a+4

Output:

b = 18  31  69

Remark: The content of b is

b = [2*(a(1))^2+3*a(1)+4    2*(a(2))^2+3*a(2)+4    2*(a(3))^2+3*a(3)+4].
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Ex. 36  An efficient way to assign the content of an array 

a = [0:0.5:4];
a

Output:

a = 0  0.5  1  1.5  2  2.5  3  3.5  4

Ex 37.  Extracting the individual element(s) of a matrix 

A = [3  5; 2  4];
c = A(2,2)+A(1,2)

Output:

c = 9

Remark: With the given A matrix, we have A(1,1) = 3, A(1,2) = 5, A(2,1) = 2, and 
A(2,2) = 4.

Ex. 38 Another example for the usage of index for a matrix

A = [3  5; 2  4];
norm1 = 0;
for m = 1:2
for n = 1:2
   norm1 = norm1+A(m,n)^2;
end
end
norm1 = sqrt(norm1)

Output:

norm1 = 7.348

Remark: This program calculates the Euclidean norm of the A matrix.
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Ex. 39  Solving a system of linear equation 

A = [4  1  2; 0  3  1; 0  1  2];
b = [17 ; 19 ; 13];
x = inv(A)*b

Output:

x  =  1
        5
        4

Remark: This program solves [A] x = b.  The solution is obtained by x = [A]1 b.

Ex. 40  An alternative to Ex. 39

A = [4  1  2; 0  3  1; 0  1  2];
b = [17 ; 19 ; 13];
x = b\A

The output is the same as Ex. 39.  Here, b\A is essentially inv(A)*b.  (The "\" is called 
"back divide" in Matlab documentations.)
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Part 5. Basic graphic applications

Ex. 41 A quick example of plot command: Draw a curve

a = [0:0.5:5];
b = 2*a.^2 + 3*a -5;
plot(a,b)

Remarks: 
(1) In "plot(a,b)", the array "a" should contain the data of the coordinate or "grid point) 
on the x-axis and "b" should be the corresponding values on the y-axis.
(2) After a plot is made, it can be further modified by using the interactive tool for 
graphics. For example, the labels of the x and y axes can be manually added to the plot.
(3) The plot can be saved in various formats (jpg, tif, eps, etc.). 
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Ex. 42 Refine the plot: Line pattern, color, and thickness

a = [0:0.5:5];
b = 2*a.^2 + 3*a -5;
plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)
xlabel('X'); ylabel('Y'); legend('Test','Location','NorthWest')

Remarks: The '-or' in the plot command set the line pattern. In this case, it's solid line 
with circular symbol. The circular symbol is filled with green color ('g' for 
'MarkerFaceColor').  The legend of the plot is set to locate at teh upper-left corner 
('Location" set to 'NorthWest') inside the frame. 
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Ex. 43 Draw multiple curves 

a = [0:0.5:5];
b = 2*a.^2 + 3*a -5;
c = 1.2*a.^2+4*a-3;
hold on
plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)
plot(a,c,'--ok','MarkerFaceColor','c','LineWidth',2)
xlabel('X'); ylabel('Y'); legend('Curve 1','Curve 2','Location','NorthWest')

Remark: Without the "hold on" command, the second plot will override the first one and 
acts to erase the curve produced by the latter.  
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Ex. 44 Draw symbols

a = [0:0.5:5];
b = 2*a.^2 + 3*a -5;
c = 1.2*a.^2+4*a-3;
hold on
plot(a,b,'or','MarkerFaceColor','g','LineWidth',2)
plot(a,c,'ok','MarkerFaceColor','c','LineWidth',2)
xlabel('X'); ylabel('Y'); legend('Curve 1','Curve 2','Location','NorthWest')
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Ex. 45 Plot with multiple panels

a = [0:0.5:5];
b = 2*a.^2 + 3*a -5;
c = 1.2*a.^2+4*a-3;
subplot(1,2,1)
plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)
xlabel('X'); ylabel('Y'); legend('Curve ','Location','NorthWest')
subplot(1,2,2)
plot(a,c,'--ok','MarkerFaceColor','c','LineWidth',2)
xlabel('X'); ylabel('Y'); legend('Curve 2','Location','NorthWest')
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Part 6  External (user-defined) function

Ex 46  How to construct and use an external function

First, create the Matlab program for an external function as a separate file. The filename 
has to be identical to the name of the user-defined function

                              myfunc1.m

This program defines a function, f(x) ≡ 2 x2 + 3 x + 7.  The "outcome" in the program is 
a dummy variable that is used to indicate the relation between the input parameter ("x") 
and the outcome after the evaluation of the function.  After an external function is 
defined, it can be used in a main program that calls it. For example:

                       mainprog1.m

Output:

       x = 0.10   f(x) =   7.3200 
       x = 0.20   f(x) =   7.6800 
       x = 0.30   f(x) =   8.0800 
       x = 0.40   f(x) =   8.5200 
       x = 0.50   f(x) =   9.0000 

Note: The file for the external function should be stored in the same directory as the 
main program. Matlab will automatically find and link all required files for the external 
functions. 
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function outcome = myfunc1(x)

outcome = 2*x^2 + 3*x + 7;

for n = 1:5

    x = n*0.1;
    z = myfunc1(x);
    fprintf('x = %4.2f  f(x) = %8.4f \r',x,z)
end



Ex 47  A function with multiple input parameters

                              myfunc2.m

This program defines a function, f(x) ≡ a x2 + b x + c.  

                       mainprog2.m

Output:

       x = 0.10   f(x) =   7.3200 
       x = 0.20   f(x) =   7.6800 
       x = 0.30   f(x) =   8.0800 
       x = 0.40   f(x) =   8.5200 
       x = 0.50   f(x) =   9.0000 
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function outcome = myfunc2(x,a,b,c)

outcome = a*x^2 + b*x + c;

for n = 1:5

    x = n*0.1;

    z = myfunc2(x,2,3,7);

    fprintf('x = %4.2f  f(x) = %8.4f \r',x,z)
end



Part 7  Use external files and prompt for input and output

Ex 48 Open a file and write the output to the file

fID1 = fopen('myoutput1.txt','w');
for n = 1:4
    b1 = n ; b2 = n^2 ; b3 = n^3;
    fprintf(fID1,'%7u %7u %7u \r',b1,b2,b3);
end

This program will produce no output on the screen but will create a file called 
"myoutput.txt" (under the same directory where the Matlab program itself is stored). The 
content of the file is

         1       1       1
         2       4       8
         3       9      27
         4      16     64

Remarks: 

(1) The first line of code opens a file, 'myoutput1.txt', with the permission type of "w" 
which means "write only".  Upon executing the command, Matlab will pick a file ID 
(which is a number) and put it in the variable, fID1.  A user does not need to know what 
this number is but will need to use it as the identifier if an output is to be written to that 
file.

(2) The command, fprintf(fID1,'%7u %7u %7u \r',b1,b2,b3), will direct the output to the 
file with file ID given by fID1.  If a file ID is not given, the shortened command 
fprintf('%7u %7u %7u \r',b1,b2,b3) will dump the output on screen which is the default 
destination of output.
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Ex 49 Read data from an existing file

fID1 = fopen('myoutput1.txt','r');
for n = 1:4
    b = fscanf(fID1,'%7u %7u %7u \r',3);
    btotal = b(1)+b(2)+b(3);
    fprintf('%7u + %7u + %7u = %7u \r', b(1), b(2), b(3), btotal)
end

Output:

      1 +       1 +       1 =       3 
      2 +       4 +       8 =      14 
      3 +       9 +      27 =      39 
      4 +      16 +     64 =      84 

Remark: We assume that the file "myoutput1.txt" has already been created by the 
Matlab program in Ex. 49 and properly stored in the same directory as the matlab code 
we are about to execute.  The first command opens the file "myoutput1.txt" with the 
designated status of "r" which means "read only". The command "b = fscanf(fID1,'%7u 
%7u %7u \r',3)" reads one record from the external file with file ID = fID1, using the 
format '%7u %7u %7u \r'.  The number "3" that follows indicates that only the first 3 
elements in the record will be read and put into the array "b".  (This is so the extra 
element, a "carriage return", will not be read.)

Ex 50 Create a prompt to request user input

num1 = input('Enter your age');
if (num1 > 17)
   fprintf('You are eligible to vote')
else
   fprintf('You are not eligible to vote')
end

Remark: This is a special case when the input is read not from an external file but from a 
prompt.  The output of this program will depend on whether the number that the user 
enters (which will be put into the variable "num1") is greater than 17.  If the input is 
expected to be a string (such as "YES", "Joe Smith"), an "s" option has to be added to 
the command. For example, "name1 = input('Enter your surname', 's')". 
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